Учебные вопросы
- Определение и значение электротехники
- Электрическая цепь и ее элементы
- Электрические цепи постоянного и переменного тока.
Общие вопросы электротехники
Электротехника – область науки и техники, использующей электрическое и магнитное явления для практических целей.
История развития этой науки занимает два столетия. Она началась после изобретения первого электрохимического источника электрической энергии в 1799 г. Именно тогда началось изучение свойств электрического тока, были установлены основные законы электрических цепей, электрические и магнитные явления стали использоваться для практических целей, были разработаны первые конструкции электрических машин и приборов. Жизнь современного человека, без использования электрической энергии, немыслима.
Все возрастающая потребность в использовании электрической энергии привело к проблеме ее централизованного производства, передачи на дальние расстояния, распределения и экономичного использования. Решение проблемы привело к разработке и созданию трехфазных электрических цепей. Огромная заслуга в создании элементов таких цепей принадлежит выдающемуся русскому ученому М.О. Доливо-Добровольскому. Он создал трехфазный асинхронный двигатель, трансформатор, разработал четырехпроводную и трехпроводную цепи (1891г.).
Сегодня электрическая энергия используется в технике связи, автоматике, измерительной технике, навигации. Она применяется для выполнения механической работы, нагрева, освещения, используется в технологических процессах (электролиз), в медицине, биологии, астрономии, геологии и др. Столь обширное проникновение электротехники в жизнь человека привело к необходимости включить ее в состав общетехнических дисциплин при подготовке специалистов всех технических специальностей. При этом перед студентами стоит главная задача – ознакомиться и усвоить физическую сущность электрических и магнитных явлений. Это позволит понять принципы работы электромагнитных устройств, правильно их эксплуатировать.
Электрическая цепь и ее элементы
Электротехническое устройство и происходящие в нем физические процессы в теории электротехники заменяют расчетным эквивалентом – электрической цепью.
Электрическая цепь – это совокупность соединенных друг с другом проводниками источников электрической энергии и нагрузок, по которым может протекать электрический ток. Электромагнитные процессы в электрической цепи можно описать с помощью понятий ток, напряжение, ЭДС, сопротивление, проводимость, индуктивность, емкость.
Электрический ток может быть постоянным и переменным.
Постоянным называют ток, неизменный во времени. Он представляет направленное упорядоченное движение носителей электрического заряда. Как известно из курса физики, носителями зарядов в металлах являются электроны, в полупроводниках электроны и дырки (ионы), в жидкостях – ионы.
Упорядоченное движение носителей зарядов в проводниках вызывается электрическим полем. Поле создается источниками электрической энергии. Источник преобразует химическую, механическую, кинематическую, световую или другую энергию в электрическую. Он характеризуется ЭДС (электронно-движущая сила) и внутренним сопротивлением. ЭДС источника может быть постоянной или переменной во времени. Переменная ЭДС может изменяться во времени по любому физически реализуемому закону. Ток, протекающий по цепи под воздействием переменной ЭДС также переменный.
Постоянный ток принято обозначать буквой I,
- переменный i(t);
- постоянную ЭДС – Е,
- переменную е(t),
- сопротивление – R,
- проводимость -g.
В международной системе единиц (СИ) ток измеряют в амперах (А), ЭДС – в вольтах (В), сопротивление в омах (Ом), проводимость – в сименсах (См).
При анализе электрических цепей, как правило оценивают значение токов, напряжений и мощностей. В этом случае нет необходимости учитывать конкретное устройство различных нагрузок. Важно знать лишь их сопротивление – R, индуктивность – L, или емкость – С. Такие элементы цепи называют приемниками электрической энергии.
Для включения и отключения элементов электрических цепей применяют коммутационную аппаратуру (рубильники, выключатели, тумблеры). Кроме этих элементов в электрическую цепь могут включаться электрические приборы для измерения тока, напряжения, мощности.
Изображение электрической цепи с помощью условных графических обозначений называют электрической схемой.
Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении принято называть вольтамперной характеристикой.
Приемники электрической энергии, вольтамперные характеристики которых являются прямыми линиями называются линейными, а электрические цепи только с линейными элементами – линейными электрическими цепями.
Электрические цепи с нелинейными элементами называются нелинейными электрическими цепями.
Источники электрической энергии
Одной из основных характеристик источников электрической энергии является ЭДС. Количественно ЭДС характеризуется работой А, которая совершается при перемещении заряда в 1 Кл в пределах источника.
Графически ЭДС изображают стрелкой в кружке. Направление стрелки совпадает с направлением ЭДС.
Перемещение заряда определяет ток источника. Прохождение тока сопровождается потерями на нагрев источника. Количественно потери удобно определять внутренним сопротивлением Rвн. Поэтому условное графическое обозначение источника ЭДС представляет последовательное включение ЭДС Е и внутреннего сопротивления Rвн.
Символами 1 – 1’ обозначаются зажимы источника. Разность потенциалов на зажимах источника называется напряжением U [B]. Стрелками показываются положительные направления тока и напряжения. Когда ключ К разомкнут, ток в цепи равен нулю и напряжение на зажимах источника равно ЭДС.
Замыкаем ключ К. В цепи возникнет ток:
При этом напряжение на зажимах источника будет равно:
Если у источника ЭДС Rвн = 0, то вольтамперная характеристика его будет в виде прямой . Такой источник называют идеальным. Напряжение на зажимах такого источника не зависит от тока.
Если у некоторого источника увеличивать Е и Rвн до бесконечности, Такой источник питания называют источником тока. Ток источника не зависит от сопротивления нагрузки. Реальный источник тока имеет конечные значения Е и Rвн.
При расчете электрических цепей реальный источник электрической энергии с конечными Е и Rвн заменяют источником ЭДС или источником тока.
Источники питания могут иметь постоянную ЭДС – Е или переменную е(t) , изменяющуюся во времени по заданному закону.
В первом случае в цепи протекает постоянный ток и она называется цепью постоянного тока. Во втором случае ток i(t) и напряжение u(t) переменные, поэтому цепь называется цепью переменного тока. В электротехнике чаще других применяется синусоидальные ток и напряжение.
Приемники электрической энергии.
Приемники электрической энергии делятся на пассивные и активные.
Пассивными называют приемники в которых не возникает ЭДС. Вольтамперные характеристики пассивных приемников проходят через начало координат. При отсутствия напряжения ток этих элементов равен нулю. Основной характеристикой пассивных элементов является сопротивление. Пассивные элементы, сопротивление которых не зависит от приложенного напряжения называются линейными. Реально таких элементов не существует. Но весьма близки к ним резисторы, реостаты, лампы накаливания и др. Зависимость напряжения от тока в таких элементах определяется законом Ома, т.е. U = I*R, где R – сопротивление элемента. Эта зависимость не меняется, если напряжение и ток – переменное.
Основным параметром индуктивного элемента является индуктивность – L. Единица измерения – генри [Г]. Если через индуктивность L протекает постоянный ток I, то в ней возникает постоянное во времени потокосцепление самоиндукции.
Будем полагать, что элемент L идеальный, т.е. сопротивление витков r отсутствует. Очевидно, что при этом падение напряжения на элементе равно нулю.
Кроме пассивных, в электротехнике применяются активные приемники. К ним относятся электродвигатели, аккумуляторы в процессе их заряда и др. В цепи переменного тока при определенных условиях роль активных элементов выполняют индуктивность и емкость. В активных элементах возникает противо – ЭДС Е. Приложенное к приемнику напряжение уравновешивается противо-ЭДС и падением напряжения на сопротивлении элемента, т.е.:
Основные топологические понятия и определения
Основными топологическими понятиями теории электрических цепей являются ветвь, узел, контур, двухполюсник, четырехполюсник, граф схемы электрических цепей, дерево и связь графо схемы. Рассмотрим некоторые из них.
Ветвью называют участок электрической цепи с одним и тем же током. Она может состоять из одного или нескольких последовательно включенных элементов.
Узлом называют место соединения трех и более ветвей. Узел обозначается на схеме точкой. Узлы, имеющие равные потенциалы, объединяются в один потенциальный узел.
Контуром называют замкнутый путь, проходящий через несколько ветвей и узлов электрической цепи.
Независимым называется контур, в состав которого входит хотя бы одна ветвь, не принадлежащая соседним контурам.
Двухполюсником называют часть электрической цепи с двумя выделенными зажимами – полюсами. Двухполюсник обозначают прямоугольником с индексами А или П. А – активный двухполюсник, в составе которого есть источники ЭДС. П – пассивный двухполюсник.
Закон Ома и Кирхгофа
Все электрические цепи подчиняются законам Ома и Кирхгофа. Краткая информация об этих законах заключается в следующем.
Закон Ома для участка цепи без ЭДС устанавливает связь между током и напряжением на этом участке:
или Закон Ома для участка цепи, содержащего ЭДС позволяет найти ток этого участка
здесь а, б – крайние точки участка; Е – значение ЭДС.
Знак «плюс» ставится при совпадении тока, протекающего по участку, с направлением ЭДС.
Первый закон Кирхгофа имеет две формулировки.
1) Сумма токов протекающих через любой узел равна нулю.
2) Сумма токов втекающих в узел равна сумме токов вытекающих из него.
Второй закон Кирхгофа:
Алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль этого контура, т.е.
В каждую из сумм слагаемые входят со знаком «плюс», если они совпадают с направлением обхода.
Электрические цепи постоянного и переменного тока
Чтобы в электрической цепи протекал переменный ток, цепь должна быть присоединена к источнику переменной ЭДС. Она выступает здесь в роли периодической вынуждающей силы, и ток в цепи совершает вынужденные колебания, разумеется, с частотой вынуждающей силы. Если ЭДС в источнике изменяется со временем по закону и источник включен в цепь с активным сопротивлением R, то и ток в цепи изменяется по косинусоидальному закону.
и источник включен в цепь с активным сопротивлением R, то и ток в цепи изменяется по к синусоидальному закону:
Здесь εm и Im — амплитуды (максимальные значения) ЭДС и силы тока.
Но свойства функции косинуса таковы, что в среднем за период колебаний сила тока равна нулю. Это, однако, не значит, что такой ток бесполезен и ни в чем себя не проявляет. Потому что хотя в среднем сила тока и равна нулю, не равен нулю квадрат силы тока. А мощность тока определяется именно квадратом силы тока. В любой момент времени мощность переменного тока в цепи с активным сопротивлением выражается равенством:
Среднее значение квадрата косинуса за период равно не нулю, а 1/2, так что среднее значение мощности
Величина называется действующим значением силы тока.
В нашем случае мощность можно также выразить через напряжение на сопротивлении:
Где: – Действующее значение напряжения
В этом состоит одно из отрицательных свойств переменного тока.
Есть и другие отрицательные следствия.
Явление электромагнитной индукции приводит, например, к тому, что переменный ток в проводах распределяется не равномерно по всему сечению, а главным образом вблизи поверхности. (Это явление называется скин- эффектом). Благодаря тому, что используется не все сечения проводов, их сопротивление реально возрастает. Далее, переменный ток, как и ток постоянный, окружен магнитным полем, но полем переменным. А такое поле, согласно закону электромагнитной индукции, вызывает в соседних проводах и в других проводящих материалах электрические токи, что приводит к бесполезной потере энергии.
Все эти недостатки полностью отсутствуют у постоянного тока. Почему же все-таки переменный ток практически безраздельно господствует в технике и в быту?
Прежде всего, сам принцип действия электрических генераторов таков, что в них возникает именно переменная ЭДС. Но не в этом главное. С помощью нехитрого устройства можно тот же генератор сделать источником и постоянного тока. Главная причина «популярности» переменного тока связана с тем, что электрическую энергию приходится передавать из мест, где она производится (электростанции), к местам ее потребления и часто на большие расстояния. При этом часть передаваемой энергии неизбежно теряется в виде тепла в проводах, по которым она передается в линиях электропередачи (ЛЭП). Чтобы эти потери были не слишком высокими, нужно, оказывается, использовать для передачи высокое напряжение.
Но на клеммах генераторов электростанций напряжение значительно меньше — всего несколько тысяч вольт. Значит, в начале линии электропередачи это напряжение нужно повысить, а перед распределением энергии среди потребителей — понизить так, чтобы, потребитель получил ее при напряжении 220 вольт. Такое повышение и понижение напряжения оказывается возможным только для переменного тока. Делается это с помощью устройств, действующих на основе явления электромагнитной индукции, — трансформаторов. Существование трансформаторов — пожалуй, единственная причина повсеместного применения переменного тока в технике.
Однако те недостатки переменного тока, которые были изложены выше, заставляют думать о том, нельзя ли все-таки для передачи электрической энергии использовать постоянный ток, конечно, тоже высокого напряжения? Это сделать непросто. Действительно, сначала нужно переменное напряжение, после его повышения, преобразовать в постоянное (для этого служат выпрямители), а затем на другом
конце ЛЭП — превратить переданное постоянное напряжение в переменное (это можно сделать с помощью устройств, называемых инверторами), чтобы напряжение можно было понизить до значения, нужного потребителю. Одна такая ЛЭП постоянного тока на напряжении 400 кВ уже работает.
Схемы соединения трехфазных цепей
Под трехфазной симметричной системой ЭДС понимают совокупность трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 1200.
Трехфазную систему э.д.с. получают при помощи трехфазного генератора, в пазах статора которого размещены три электрически изолированные друг от друга обмотки – фазные обмотки генератора. Плоскости обмоток смещены в пространстве на 120°. При вращении ротора генератора в обмотках наводятся синусоидальные э.д.с. одинаковые по амплитуде, но сдвинутые по фазе на 120°.
Чтобы отличить три э.д.с. трехфазного генератора друг от друга, их обозначают соответствующим образом. Если одну э.д.с. обозначить , а опережающая на 120° –
На электрической схеме трехфазный генератор изображают в виде трех обмоток, расположенных друг к другу под углом 120°.
При соединении “звездой” одноименные зажимы (например, концы) трех обмоток объединяются в один узел, который называют нулевой точкой генератора и обозначают буквой 0. Начала обмоток генератора обозначают буквами А, В, С
При соединении обмоток генератора “треугольником” конец первой обмотки генератора соединяется с началом второй, конец второй – с началом третьей, конец третьей – с началом первой.
Геометрическая сумма э.д.с. в треугольнике равна нулю. Поэтому, если в зажимам А, В, С не присоединена нагрузка, то по обмоткам генератора не будет протекать ток. Совокупность трехфазной системы ЭДС и трехфазной нагрузки (или нагрузок и соединительных проводов) называют трехфазной цепью.