Добавить в закладки сайт Добавить
в избранное

Привет, уважаемый читатель! Кажется ты используешь AdBlock!

Редакция сайта обращается к тебе с просьбой отключить блокировку рекламы на нашем сайте.

 

Портал fireman.club абсолютно бесплатен для тебя и существует,
развивается только за счет доходов от рекламы.

Мы никогда не размещали навязчивую рекламу и не просили Вас кликать по баннерам.

Вашей посильной помощью сайту может быть отключение блокировки рекламы для проекта.

Пожалуйста, добавьте нас в исключение! Спасибо Вам за поддержку!

Более подробная информация находится ТУТ

fireman.club

Сайт пожарных | Пожарная безопасность



Пожарная техника третье издание, переработанное и дополненное. Под редакцией заслуженного деятеля науки РФ доктора технических наук, профессора М.Д. Безбородько Москва г.2004

07.10.201514:15

Внимание: Если ничего не отобразилось, обновите страницу!
Возможно формат файла не поддерживается.
Скачать файл вы сможете после регистрации на портале.

Просмотров 868

 

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациями ликвидации последствий стихийных бедствий

АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

П О Ж А Р Н А Я

Т Е Х Н И К А

Москва 2004

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациями ликвидации последствий стихийных бедствий

АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

П О Ж А Р Н А Я

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациями ликвидации последствий стихийных бедствий

АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

П О Ж А Р Н А Я

Т Е Х Н И К А

Москва 2004

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациями ликвидации последствий стихийных бедствий

АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

П О Ж А Р Н А Я

Т Е Х Н И К А

Издание третье,

переработанное и дополненное

Под редакцией заслуженного деятеля науки РФ

доктора технических наук, профессора

М.Д. Безбородько

Учебник для слушателей и курсантов

высших пожарно-технических образовательных учреждений

МЧС России

Москва 2004

УДК 614.8

ББК 38.96

П 46

Пожарная техника: Учебник / Под ред. М.Д. Безбородько.-М.: Академия ГПС МЧС России, 2004.-550 с.

Р е ц е н з е н т ы: Федеральное государственное учреждение – Всесоюзный научно-исследовательский институт противопожарной обороны МЧС России; кафедра пожарной тактики и службы Академии ГПС МЧС России

В учебнике рассмотрены различные виды пожарно-технического вооружения, область его применения на пожарах. Основы устройства пожарных автомобилей и их технические характеристики представлены в объеме, необходимом для тактически правильного их применения при тушении пожаров.

В учебнике большое внимание уделено технической службе в ГПС и эксплуатации пожарных автомобилей как основы обеспечения их технической готовности и боеспособности пожарных частей.

Учебник написан в соответствии с программой дисциплины «Пожарная техника» по специальности 330400 «Пожарная безопасность» и предназначен для курсантов и слушателей высших учебных заведений. Он может использоваться также и практическими работниками.

Учебник написан заслуженным деятелем науки РФ докт. техн. наук, проф.М.Д. Безбородько.

Отдельные главы и параграфы написали канд. техн. наук, доц. М.В. Алешков(п. 3.1; 3.2 и 3.4); канд. техн. наук, доц. В.В. Роенко (гл. 6 и 12); канд. техн. наук, доц.Н.И. Ульянов (п. 9.5 и 9.6); инж. А.В. Плосконосов (п. 3.3); докт. техн. наук проф. В.П. Назаров (гл. 16).

Компьютерное исполнение иллюстраций выполнено инж. А.В. Плосконосовым, набор рукописи на компьютере произведен инж. И.В. Гашковой.

Авторы выражают признательность канд. техн. наук, доц. Н.И. Ульянову (бывшему заместителю начальника кафедры пожарной техники) за участие в систематическом обсуждении материала учебника.

М.Д. Безбородько, 2004

Академия Государственной противопожарной службы МЧС России, 2004

ОГЛАВЛЕНИЕ

Предисловие 3

Введение. НАЗНАЧЕНИЕ ПОЖАРНОЙ ТЕХНИКИ. ЕЕ КЛАССИФИКАЦИЯ 4

1.Краткий очерк развития пожарной техники 4

2.Пожарные автомобили. Определение и классификация 11

3.Содержание пожарных автомобилей в пожарных частях 14

4.Задачи курса «Пожарная техника» 18

Раздел 1. ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ 20

Глава 1. Боевая одежда пожарных, оборудование для выполнения

первоочередных аварийно-спасательных работ 20

Боевая одежда и снаряжение пожарных 21

Теплоотражательные и теплоизоляционные костюмы 25

Оборудование и инструмент для самоспасания и спасания людей 27

Инструмент для выполнения первоочередных аварийно-спасательных работ 33

Аварийно-спасательный инструмент с гидроприводом 36

Особенности размещения ПТВ 42

Глава 2. Пожарные насосы 44

Основные определения и классификация насосов 44

Объемные насосы 47

Струйные насосы 51

Пожарные центробежные насосы серии ПН 54

Пожарные центробежные насосы (ПЦН) 60

Вакуумные системы пожарных насосов 76

Неисправности центробежных насосов и их обслуживание 85

Глава 3. Пожарно-техническое вооружение для подачи огнетушащих веществ

в очаг пожара 94

Пожарные рукава 94

Гидравлическое оборудование102

Приборы и аппараты для получения воздушно-механической пены114

Глава 4. Огнетушители120

Классификация огнетушителей и методы оценки их огнетушащей

способности120

Газовые огнетушители122

Порошковые огнетушители126

Огнетушители воздушно-пенные132

Огнетушители аэрозольные134

Выбор, размещение и техническое обслуживание огнетушителей136

Раздел 2. ОСНОВНЫЕ ЭЛЕМЕНТЫ КОНСТРУКЦИЙ ПОЖАРНЫХ

АВТОМОБИЛЕЙ140

Глава 5. Базовые транспортные средства ПА140

Общие требования к ПА140

Требования к ПА общего применения143

Базовые транспортные средства и двигатели пожарных автомобилей147

Трансмиссии и приводы управления ПА155

Глава 6. Элементы теории движения пожарного автомобиля166

Тягово-скоростные свойства пожарного автомобиля166

Тяговая сила ведущих колес168

Сила сопротивления качению колес пожарного автомобиля172

Сила сопротивления подъему пожарного автомобиля174

Сила сопротивления воздуха175

Сила инерции176

Нормальные реакции опорной поверхности колес177

Уравнение силового баланса пожарного автомобиля179

Уравнение мощностного баланса пожарного автомобиля180

Динамическая характеристика пожарного автомобиля183

Разгон пожарного автомобиля186

Аварийная безопасность пожарного автомобиля188

Тормозные свойства пожарного автомобиля188

Устойчивость и управляемость пожарного автомобиля191

Проходимость и маневренность пожарного автомобиля197

Глава 7. Насосные установки202

Требования к насосным установкам202

Арматура водопенных коммуникаций пожарных автоцистерн203

Водопенные коммуникации АЦ207

Согласование режимов работы двигателя ПА и потребителей энергии220

Компоновка пожарных автомобилей224

Дополнительное электрооборудование231

Раздел 3. ОСНОВНЫЕ И СПЕЦИАЛЬНЫЕ ПОЖАРНЫЕ АВТОМОБИЛИ239

Глава 8. Основные пожарные автомобили общего применения239

Пожарные автоцистерны и автонасосы239

Автомобили насосно-рукавные пожарные 252

Работа на пожарных автомобилях256

Анализ автоцистерн нового поколения266

Автомобили первой помощи пожарные (АПП)272

Мотопомпы277

Глава 9. Основные ПА целевого применения281

Пожарные насосные станции281

Пожарные автомобили рукавные286

Аэродромные пожарные автомобили293

Пожарные автомобили воздушно-пенного тушения307

Пожарные автомобили порошкового тушения313

Пожарные автомобили комбинированного тушения320

Автомобили газового тушения325

Автомобили газоводяного тушения328

Защита ПА от теплового излучения пожаров333

Глава 10. Специальные и вспомогательные пожарные автомобили (СПА)

и другая пожарная техника341

Пожарные автомобили ГДЗС341

Автомобили и прицепы дымоудаления344

Аварийно-спасательные автомобили349

Пожарные автомобили связи и освещения354

Автомобили штабные357

Пожарная техника на базе летательных аппаратов, судов и

железнодорожных средств359

Техника, приспособленная для тушения пожаров373

Глава 11. Пожарные автолестницы и автоподъемники коленчатые375

Общие положения375

Особенности устройства механизмов АЛ378

Управление механизмами АЛ и АПК391

Безопасность работы на АЛ395

Обеспечение технической готовности и надежной работы АЛ400

Пожарные автоподъемники405

Глава 12. Организация проектирования и изготовления пожарной техники411

Методы правового регулирования взаимоотношений заказчика

с разработчиком и производителем пожарной техники412

Разработка и постановка пожарного автомобиля на производство417

Раздел 4. ТЕХНИЧЕСКАЯ СЛУЖБА В ГПС425

Глава 13. Эксплуатация пожарной техники425

Изменение технического состояния систем и механизмов ПА425

Методы оценки надежности и качества ПА436

Система технического обслуживания и ремонта пожарных автомобилей443

Влияние природно-климатических условий на эксплуатацию ПА449

Техническое диагностирование463

Глава 14. Организация и задачи технической службы471

Техническая служба как система управления471

Организация работы пожарных отрядов (частей) технической службы478

Организация эксплуатации пожарных рукавов485

Глава 15. Обеспечение боевой способности пожарных частей500

Обоснование потребности в пожарной технической продукции500

Приемка и списание пожарной техники504

Охрана труда пожарных508

Защита пожарной техники от коррозии513

Техническая подготовка пожарных522

Экологическая опасность пожарных автомобилей528

Глава 16. Основы сертификации продукции, работ и услуг534

16.1.Методическая база сертификации535

16.2.Организация сертификации536

16.3.Цели сертификации. Оформление сертификата540

16.4.Инспекционный контроль использования сертификата543

Литература546

Учебник написан по программе дисциплины «Пожарная техника» Академии ГПС МЧС России.

Методика изложения материала базируется на более чем сорокалетнем опыте подготовки инженеров для противопожарной службы страны.

Первые пособия по изучению пожарной техники для высшей школы были написаны Н.Б. Кащеевым, В.И. Трушиным и др. Однако первый полноценный учебник для высшей школы «Машины и аппараты пожаротушения» был разработан преподавателями кафедры в 1972 году, издан под редакцией канд. техн. наук, доцента Н.Ф. Бубыря.

Совершенствование пожарных машин, обобщение опыта их эксплуатации, осуществляемое ГУГПС, результаты научных и диссертационных исследований, проводимых во ВНИИПО и ВИПТШ (МИПБ), требовали введения в курс новых материалов. Большое значение имел и накапливаемый опыт преподавания курса. Все это явилось основой совершенствования и издания новых учебников. Так, в 1979 и в 1989 гг. были разработаны и изданы учебники «Пожарная техника» под руководством и редакцией докт. техн. наук, проф. М.Д. Безбородько.

В этот же период началась разработка и издание учебных пособий и учебников по пожарной технике для пожарно-технических училищ (ПТУ).

С 1992 г. в МИПБ (Академию ГПС) поступают учащиеся из ПТУ и окончившие среднюю школу. Это обусловило необходимость разработки учебника, по которому могли бы учиться и слушатели-офицеры и курсанты. Поэтому положительный опыт как написания, так и использования учебников для ПТУ и высшего учебного заведения оказался весьма ценным. Это первая особенность настоящего учебника.

Наряду с совершенствованием пожарной техники отдел техники ГУГПС придавал большое значение вопросам технической готовности пожарных машин, продлению сроков эксплуатации. Поэтому в учебнике эти вопросы рассмотрены с должным вниманием. Это вторая особенность этого учебника.

Третья особенность заключается в том, что в учебнике изложены основы организации технической службы в ГПС.

В связи с введением Академии ГПС в подчинение МЧС в учебнике широко представлены области применения специальных пожарных авто-мобилей, аварийно-спасательный инструмент различного назначения, атакже суда, вертолеты и самолеты, предназначенные для тушения пожа-ров.

При написании учебника широко использовались материалы из технических описаний и инструкций по эксплуатации новых пожарных автомобилей, выпускаемых заводами России.

ВВЕДЕНИЕ

НАЗНАЧЕНИЕ ПОЖАРНОЙ ТЕХНИКИ. ЕЕ КЛАССИФИКАЦИЯ

КРАТКИЙ ОЧЕРК РАЗВИТИЯ ПОЖАРНОЙ ТЕХНИКИ

Использование огня первобытным человеком было величайшим открытием. Естественно, что тогда не осознавалось, что любое великое открытие несет в себе и добро и зло.

Огонь принес человеку тепло и горячую пищу, но одновременно он принес ему и неисчислимые бедствия – пожары, с которыми необходимо вести борьбу.

На протяжении сотен лет накапливался опыт тушения пожаров. В течение этого времени создавались различные примитивные средства, облегчающие борьбу с пожарами, создавалась необходимость коллективного противостояния огню. Все это привело к необходимости организации пожарной службы. Ей придали статус государственной службы. Так, в России в 1649 г. вышел указ «Наказ о городском благочинии». В это же время появился и второй указ «Соборное уложение». Основным положением указов было то, что необходимо готовить людей к тушению пожаров: предписывалось иметь различные средства тушения пожаров водой, устанавливались меры по предотвращению возгораний и ответственность за возникновение пожаров.

Обобщая факты убытков от пожаров, государственные чиновники пришли к выводу, что определяющими являются два общих фактора.

Первую группу факторов составляют: горючесть строительных материалов, внутренней «начинки», планировка зданий и сооружений. В соответствии с этим заменялись горючие строительные материалы на негорючие, создавались рациональные планировки зданий, ограничивающие распространение огня, использовались различные препятствия его развитию и распространению.

Эта группа факторов во многом обусловливает условия развития пожаров.

Вторая группа факторов включает: быстроту обнаружения и извещения о пожаре, технические характеристики средств тушения, дорожные условия, водоснабжение и т.д. Эти факторы в значительной степени обеспечивают необходимые условия тушения пожаров.

Постепенно развивалась пожарная техника. В настоящее время она включает первичные средства тушения, пожарные машины, стационарные установки пожаротушения и средства пожарной связи. Она создавалась и совершенствовалась на основе технического прогресса. Ее развитие осуществлялось на протяжении столетий и прошло большой путь от простого снаряжения до мощных средств тушения пожаров. По мере развития техники создавались новые огнетушащие вещества, средства доставки личного состава и огнетушащих веществ на пожар.

Совершенствование пожарной техники потребовало разработки новых тактических приемов тушения пожаров и совершенствования подготовки специальных кадров.

Русские инженеры и мастера внесли большой вклад в развитие пожарного дела и пожарной техники. Так, в 1779 г. мастер слесарного дела Петр Дальгерон предложил механическую лестницу и за свое изобретение был награжден медалью Российской Академии Наук. В 1809 г. механик К.В. Соболев изобрел выдвижную лестницу, испытал ее в Петербурге и был награжден медалью «За полезное».

В 80-х гг. член Русского технического общества И.А. Вермишев предложил тушить нефтепродукты диспергированной водой. В 1901–1904 гг. преподаватель физики в Баку инж. А.Г. Лоран предложил тушить нефтепродукты пеной.

Повлияло на развитие пожарного дела строительство водопроводов. Они были созданы в Москве в 1805 г., Новгороде – в 1848 г., Киеве – в 1870 г., Харькове – в 1879 г.

В 1913 г., обобщая опыт тушения пожаров, брандмейстер Нарвской пожарной части Петербурга Н.П. Требизов опубликовал книгу «Пожарная тактика», которая переиздавалась до 1928 г.

Рис. 1. Паровая труба

Пожарная охрана дореволюционной России оснащалась в основном ручными пожарными поршневыми насосами, устанавливаемыми на конных обозах. К 1914 г. было 6020 поршневых насосов и 120 паровых пожарных труб (насосов) (рис.1). Мощность паровых насосов была 11–30 кВт. Это позволяло при напоре до 15 м обеспечивать подачу воды 750–2250 л/мин. В 1917 г. в стране было около 10 пожарных автомобилей.

После Великой Октябрьской социалистической революции состояние пожарной охраны было крайне тяжелое. К началу1918 г. в стране не было ни одного промышленного предприятия, производившего пожарную технику и пожарный инвентарь. В пожарных депо-мастерских пожарные Москвы, Петрограда ремонтировали пожарное оборудование и изготовляли пожарный инвентарь кустарным способом.

Энтузиасты приспосабливали для перевозки боевых расчетов и пожарного оборудования автомобили иностранных фирм «Фиат», «Паккард» и др. Это были автомобили с мощностью двигателей 25–30 кВт. Пожарный автонасос «Паккард» грузоподъемностью 2 т имел запас воды 1400 л, подача насоса была равна 1500 л/мин, боевой расчет составлял 6 человек. Пожарный автонасос «Фиат» грузоподъемностью 1,5 т имел запас воды 365 л, боевой расчет 10 человек.

Расходы на содержание механизированных пожарных команд были в среднем на 30 % меньше, чем на содержание пожарных команд на конных обозах.

17 апреля 1918 г. был обнародован декрет «Об организации государственных мер борьбы с огнем». Декрет предусматривал установление контроля над производством противопожарного оборудования и снаряжения; разработку пожарных инструментов и машин.

В мае 1919 г. Совет Труда и Обороны принял постановление «О мерах по сохранению пожарных обозов и содержанию их в боевой готовности». В 1921 г. В.И. Ленин подписал еще 11 постановлений и распоряжений по вопросам борьбы с пожарами и улучшению организации пожарной охраны.

В этих постановлениях отражены следующие вопросы:

усиление противопожарных мероприятий в стране;

изготовление противопожарного инвентаря;

обеспечение пожарных продовольствием;

демобилизация из рядов Рабоче-Крестьянской Красной Армии всех пожарных;

выделение для пожарной охраны 3000 лошадей и т.д.

В 1922 г. было отпущено 5400 руб. золотом на закупку пожарной техники за границей. Принимались меры к производству пожарной техники в стране.

В период социалистической индустриализации и коллективизациисельского хозяйства (1926-1932 гг.) в стране начато планомерное производство пожарных автонасосов. Первой такой машиной был автонасос АМО-Ф-15 (рис. 2). Грузоподъемность шасси 1,5 т, мощность двигателя около 30 кВт. Коловратный насос мог подавать 720–940 л/мин воды. Ее запас на машине был равен 350 л, боевой расчет составлял 8 человек.

Пожарные машины явились мощным средством механизации работ по тушению пожаров. Их эксплуатация требовала квалифицированного технического обслуживания. С этими работами могли справиться только специально подготовленные кадры. В 1924 г. в Ленинграде открылся пожарный техникум, реорганизованный впоследствии в Пожарно-техническое училище. Такое же училище было открыто в 1928 г. в Харькове. Так было положено начало подготовке квалифицированных кадров со средним специальным образованием для пожарной охраны страны.

52260564770

Рис. 2. Пожарный автомобиль АМО-Ф-15

В период 1932–1937 гг. была создана серия пожарных автоцистерн на базе отечественных автомобилей ЯГ-4 и ЯГ-10. Грузоподъемность их равнялась 5 и 10 т, а запас воды составлял соответственно 3400 и 4500 л. Боевой расчет – 4 человека.

На автомобиле ЯГ-4 были установлены два двигателя мощностью по 63 кВт. Один двигатель был тяговым и являлся приводом на один насос. Второй двигатель был приводом на второй насос.

В 1931–1932 гг. вступили в строй Горьковский и Московский автозаводы. Они выпускали автомашины ГАЗ и ЗИС. На их базе было начато проектирование и создание пожарных машин ПМГ (горьковского завода) и ПМЗ (московского завода ЗИС). Началась разработка пожарных машин со специальными средствами тушения.

С 1933 г. пожарные машины выпускались только на шасси отечественных автомобилей. Началась разработка механических автолестниц. В этот период был создан первый автомобиль воздушно-пенного тушения. Вместимость его цистерны была 4000 л, что давало возможность получить до 32000 л пены. Был разработан углекислотно-снежный пожарный автомобиль на шасси ЗИС-5. Создавались водозащитные пожарные автомобили, пожарные автомобили освещения.

Промышленность страны начала выпускать пожарные автонасосы и автоцистерны ПМГ-1, ПМЗ-1, ПМЗ-2 на базе транспортных автомобилей ГАЗ-АА и ЗИС-5.

Для пожарной охраны впервые было разработано специальное шасси. На его базе был создан автонасос ЗИС-11 (рис. 3). Он имел мощность двигателя 55 кВт, грузоподъемность 3 т, запас воды был 340 л, центробежный насос подавал 1340 л/мин воды. Боевой расчет на автонасосе состоял из 12 человек.



Рис. 3. Пожарная автоцистерна ЗИС-11

В предвоенные годы были сформулированы требования к пожарным центробежным насосам, которые должны создавать напор до 140 м и всасывать воду с глубины не менее 7 м. Созданные пожарные автомобили обладали хорошими тактико-техническими характеристиками.

В этот период (1937 г.) был образован Центральный научно-исследовательский институт противопожарной обороны на базе Центральной научно-исследовательской лаборатории, организованной в 1931 г. В этом институте была сосредоточена вся работа по созданию и совершенствованию пожарной техники.

Потребовалась подготовка инженерных кадров, которая была начата в 1933 г. на базе Ленинградского института инженеров коммунального хозяйства.

В период Великой Отечественной войны (1941–1945 гг.) выпускались пожарные автомобили с передним расположением насосов ПД-10, а также использовались бортовые машины с насосами и местами в кузове для личного состава боевых расчетов.

В период восстановления народного хозяйства (1946–1958 гг.) осуществлялось техническое перевооружение пожарной охраны страны. Для пожарных автомобилей серий ПМГ, а также ПМЗ были разработаны закрытые кабины для боевого расчета, двухступенчатый насос ПН-25 (впоследствии замененный ПН-30 и ПН-40), модифицированные трансмиссии.

Вместимость цистерны пожарных автомобилей достигла 1500–2000 л воды, напор, создаваемый насосами, был 90 м; максимальная скорость движения ПА составила 80 км/ч, мощность двигателей 58–66 кВт (ГАЗ и ЗИЛ). В начале 50-х гг. были созданы автомобильные пожарные лестницы. Появились пожарные автомобили ГДЗС, водозащитные, углекислотного и пенного тушения, службы связи и освещения, технической службы.

Создание мощной пожарной техники потребовало более качественной подготовки кадров. С этой целью в 1948 г. были созданы высшие пожарно-технические курсы, а в 1957 г. на их базе был организован инженерный факультет в Высшей школе МВД СССР. На базе этого факультета в 1974 г. была создана Высшая инженерная пожарно-техническая школа МВД СССР. В 1997 г. она была преобразована в Московский институт пожарной безопасности. На его базе в 1999 г. была создана Академия Государственной противопожарной службы МВД России.

Создание новых и совершенствование выпускаемых промышленностью пожарных машин регламентируется ГУГПС. По его заданию во ВНИИПО разрабатывается типаж пожарных автомобилей на определенный срок.

В типаже пожарных автомобилей устанавливается их оптимальная номенклатура, обосновываются параметры и показатели их типоразмерного ряда. Наряду с этим определяются базовые модели пожарных автомобилей и их модификации.

Начиная с 1959 г. была создана серия новых более совершенных автомобилей: пожарных автоцистерн АЦ-40(130)63Б, АЦ-40(131)137 (рис.4), автомобиль порошкового тушения АП-3(130)148, автомобили пожарные аэродромные АА-60(7310)16001 и АА-40(131)139, ПНС-110(131)131.

Рис. 4. Пожарная автоцистерна АЦ-40(131)137

Мощность двигателей этих пожарных автомобилей достигла 110 кВт; скорость движения увеличилась до 80–90 км/ч, вместимость цистерн составила 2000–2300 л воды, а баков для пенообразователя – 150 л.

Промышленность стала производить пожарные автомобили тяжелого типа, например АЦ-40(375н) Ц1А, с запасом воды 4000 л и пенообразователя 180 л, на большинстве пожарных автомобилей установлен унифицированный насос ПН-40УА. Он развивает напор до 100 м при подаче воды 40 л/с.

При разработке новых пожарных автомобилей учитывается ряд факторов. Во-первых, началось создание пожарных автомобилей на базе грузовых автомобилей с дизельными двигателями. Выпуск таких грузовых автомобилей в стране успешно освоен. Их внедрение обусловлено тем, что дизельные двигатели на 25–30 % расходуют меньше топлива, чем карбюраторные двигатели, работающие на бензине. Во-вторых, осуществлено увеличение мощности двигателей со 110 до 155 кВт и более. В-третьих, большое внимание уделяется как основным, так и специальным пожарным автомобилям.

Так, были созданы пожарные автолестницы с дизельными двигателями. Серийно выпускается пожарная автоцистерна АЦ-40(133ГЯ), модель 101А, смонтированная на шасси автомобиля ЗИЛ-133ГЯ. Она имеет запас воды 5000 л и пенообразователя 360 л. Мощность двигателя на автоцистерне 155 кВт. Модификацией этого пожарного автомобиля является автоцистерна АЦ-40/4(133ГЯ), модель 181-01. На этой автоцистерне установлен двухступенчатый пожарный насос. При напоре 100 м его подача равняется 40 л/с, при напоре 300–350 м подача насоса составляет 1,6–1,8 л/с, боевой расчет на автоцистернах 6 человек.

С 1985 г. выпускается пожарная автоцистерна АЦ-40(7310) на шасси Урал с дизельным двигателем КамАЗ 7310.

Новым является пожарный автомобиль комбинированного тушения АКТ-0,50,5(66), модель 207. Он создан на шасси автомобиля ГАЗ-66, мощность двигателя около 85 кВт, запас порошка и пенообразователя по500 кг, боевой расчет 2 человека. Конструкция автомобиля позволяет подавать одновременно или последовательно пену и порошок. Автомобиль АКТ используют для тушения пожаров на машиностроительных заводах, аэродромах, объектах нефтехимической промышленности.

Был разработан порошковый автомобиль АП-5(53213), модель 196 на базе грузового автомобиля КамАЗ. Запас порошка на нем 5000 кг, подача лафетным стволом достигает 35 кг/с. Пожарный автомобиль предназначен для тушения разлитых легковоспламеняющихся жидкостей, электроустановок, сжиженных газов и т.д.

Освоен также выпуск специальных автомобилей, таких, как пожарный рукавный автомобиль АР-1,8(131), дымосос АД(66), автомобиль газодымозащитной службы ГДЗС-12(130), а также коленчатый подъемник на шасси МАЗ-7310.

Новый этап развития пожарной техники начался с образования Российской Федерации.

Начиная с 1993 г. предприятиями страны освоен выпуск нескольких десятков новых моделей ПА, разработано и освоено производство практически всех видов отечественных ПА, необходимых для ведения боевых действий по тушению пожаров.

Заводами создана обширная номенклатура автоцистерн на шасси ГАЗ, ЗИЛ, КамАЗ и Урал. Разработана серия пожарных насосов нового поколения. По желанию заказчика заводы могут комплектовать АЦ на шасси любых грузовых автомобилей, устанавливать на них насосы различных модификаций. Кроме традиционного пожарно-технического вооружения, на ряде автоцистерн устанавливаются лебедки, средства освещения, дымососы и т.д.

Заводами разработана серия специальных автомобилей: аварийно-спасательных, связи и освещения, газодымозащитной службы и др. Заводы производят новые автоцистерны и коленчатые подъемники, обеспечивающие выполнение работ на высоте 50 м и более.

ПОЖАРНЫЕ АВТОМОБИЛИ. ОПРЕДЕЛЕНИЕ И КЛАССИФИКАЦИЯ

Пожары возникают и развиваются всюду, где есть горючие материалы и источники их воспламенения. Пожар – это неконтролируемое горение. Он характеризуется большой скоростью распространения пламени, сопровождается выделением большого количества тепловой энергии и, следовательно, быстрым увеличением температуры вблизи очага горения. Кроме того, в продуктах горения содержатся: сажа, окислы различных газов, ядовитые вещества и т.д.

Таким образом, пожары характеризуются быстрым нарастанием опасных факторов пожара. Это и создает большую опасность для жизни людей и приводит к быстрому уничтожению материальных ценностей. Следовательно, необходимо как можно быстрее ликвидировать загорание и потушить пожар, т.е. создать условия, при которых процессы горения не могут развиваться.

Горению подвергаются материалы различного агрегатного состояния. Тушение их требует применения огнетушащих веществ, обеспечивающих рациональный механизм тушения. Для его реализации в очаг горения должно подаваться необходимое огнетушащее вещество с определенной интенсивностью.

Таким образом, для успешного тушения пожаров следует выполнять два основных требования: как можно быстрее начать их тушение и подавать в очаг горения огнетушащие вещества требуемого состава и с необходимой интенсивностью. Эти два требования отражаются в технических характеристиках пожарной техники.

Пожарная техника – это технические средства тушения пожара, ограничения его развития, защиты людей и материальных ценностей от него.

В настоящее время пожарная техника охватывает большой арсенал различных средств: первичные средства пожаротушения, пожарные машины, установки пожаротушения и средства связи.

Перед началом тушения пожаров могут выполняться ряд специальных работ: разведка пожара, удаление продуктов горения из помещений, спасание людей, вскрытие конструкций и т.д. Для выполнения этих работ требуется номенклатура специальных пожарных машин со специальным оборудованием.

Пожарная машина – это транспортная или транспортируемая машина, предназначенная для тушения пожара.

Для обслуживания личного состава и пожарной техники, особенно на крупных пожарах, используются вспомогательные пожарные машины.

Пожарные машины создаются на основе различных транспортных средств: колесных и гусеничных машин, плавательных и летательных аппаратов, поездов. Их называют: пожарные автомобили (ПА), пожарные катера, суда, вертолеты, поезда.

Пожарными автомобилями укомплектованы подразделения Государственной противопожарной службы (ГПС). В некоторых из них используются пожарные катера, вертолеты, танки.

Пожарными автомобилями укомплектовываются также подразделения пожарной охраны различных министерств (железнодорожный транспорт, лесное хозяйство и т.д.).

Пожарные автомобили состоят из шасси, основы транспортного средства, и пожарной надстройки. Она может включать салон для боевого расчета, агрегаты различного назначения (пожарные насосы, механизмы автолестниц и т.д.), емкости для огнетушащих веществ, отсеки для пожарно-технического вооружения (ПТВ).

Разнообразие пожаров и условий пожаротушения, а также выполняемых работ при боевых действиях потребовали создания ПА различного назначения. По основным видам выполняемых работ ПА подразделяются на основные, специальные и вспомогательные. Основные ПА, в свою очередь, состоят из ПА общего и целевого применения (табл. 1).

Таблица 1

Основные пожарные автомобили Специальные пожарные автомобили Вспомогательныепожарныеавтомобили

общего применения целевого применения АЦ – автоцистерны

АНР – насосно-рукавный

АПП – первой помощи

АВД – с насосом высокого давления АА – аэродромные

АП – порошкового тушения

АПТ – пенного тушения

АКТ – комбинированного тушения

АГТ – газового тушения

ПНС – насосная станция

АГВТ – газоводяного тушения АЛ – автолестницы

АПК– автоподъемники коленчатые

АР – рукавные

ДУ – дымоудаления

ГДЗС – газодымозащитной службы

АСА – автомобили аварийно-спасательные

АШ - штабные Бензовозы

Авторемонтные мастерские

Автобусы

Грузовые автомобили

Легковые автомобили

Основные ПА предназначены для доставки личного состава подразделений ГПС, огнетушащих веществ и оборудования к месту пожара и подачи огнетушащих веществ в зону горения. ПА общего применения предназначены для тушения пожаров на объектах городов и в жилом секторе. ПА целевого применения обеспечивают тушение пожаров на объектах нефтехимической промышленности, аэродромах и др.

Основные ПА общего применения обозначаются так: автоцистерны пожарные – АЦ; пожарные автомобили насосно-рукавные – АНР; пожарные автомобили с насосами высокого давления – АВД, пожарные автомобили первой помощи – АПП. Они характеризуются рядом параметров. Нормами пожарной безопасности установлено, что в качестве главных параметров, определяющих функциональное назначение ПА, используются: вместимость цистерны, м3; подача насоса, л/с, при номинальной частоте вращения вала насоса; напор насоса, м вод.ст.

Начальные буквы наименований ПА и главный параметр типа ПА положены в основу их условных обозначений.

Примеры условных обозначений.

Пример 1. АЦ-5-40(4310), модель ХХХ. Автоцистерна пожарная, вместимость цистерны 5 м3 воды, подача воды насосом 40 л/с, шассиКамАЗ 4310, первая модификация модели.

Пример 2. АКТ-0,5/0,5(131), модель 207 – автомобиль комбинированного тушения, вместимость цистерн для порошка и пенообразователя 500 л (0,5 м3), шасси автомобиля ЗИЛ-131, модель 207.

Пример 3. ПНС-110(131)-131А – пожарная насосная станция, подача насоса 110 л/с, шасси автомобиля ЗИЛ-131, модель 131А.

Специальные ПА применяются для выполнения разнообразных работ: подъема на высоту, разборку конструкций, освещения и др. В качестве главных параметров, характеристик ПА, определяющих функциональное назначение, используются, например, высота подъема автолестниц, мощность генератора аварийного спасательного автомобиля и т.д.

Примеры условных обозначений:

АЛ-30(4310) – пожарная автоцистерна с высотой подъема колен лестницы 30 м на шасси автомобиля КамАЗ 4310.

АСА-20(4310) – аварийно-спасательный автомобиль, мощность генератора 20 кВт на шасси автомобиля КамАЗ 4310.

Вспомогательные автомобили обеспечивают функционирование пожарных подразделений. К ним относятся: грузовые автомобили, топливозаправщики, передвижные ремонтные мастерские и др.

Для выделения ПА из общего транспортного потока в условиях и значительной плотности и интенсивности дорожного движения они должны обладать определенной информативностью. Она осуществляется формой изделия, окраской, световой и звуковой сигнализацией.

Рис. 5. Цветно-графическая схема пожарногоавтомобиля на базе грузового шасси

Все изделия пожарной техники окрашиваются в красный цвет. Для усиления информативности в цветно-графической схеме используется контрастирующий белый цвет. Цветно-графическая схема, надписи и опознавательные знаки, а также требования к специальным световым и звуковым сигналам установлены стандартом. Разбивка окрашиваемых поверхностей, расположение надписей и обозначений устанавливаются в порядке, представленном на рис. 5.

На двери кабины указываются номер пожарной части и город, на корме – тип ПА, например АЦ, – автоцистерна и номер пожарной части. Согласно цветно-графической схеме, бамперы ПА окрашивают в белый цвет, раму, диски колес и видимые детали ходовой части – в черный.

Колена пожарных лестниц, авто- и пеноподъемников окрашивают в белый или серебристый цвет.

При выполнении оперативного задания информативность ПА усиливается звуковым и световым сигналами.

Тревожная световая сигнализация ПА создается светопроблесковым маяком синего цвета. Они работают от бортовой сети с напряжением 12 или 24 В, обеспечивая частоту мигания (2±0,5) Гц, при этом темная фаза не должна быть менее 0,2 с.

Звуковой сигнал может создаваться сиренами постоянного тока, подающими два или более чередующихся сигнала с частотой звучания от 250 до 650 Гц. Уровень звукового давления на расстоянии 2 м от сирены должен находиться в пределах 110–125 дБ.

В качестве звукового сигнала может использоваться сирена, приводимая в действие отработавшими газами двигателя.

3. СОДЕРЖАНИЕ ПОЖАРНЫХ АВТОМОБИЛЕЙ В ПОЖАРНЫХ ЧАСТЯХ

Высокая боевая готовность пожарных частей и эффективность пожарного оборудования достигается правильным содержанием, а также проведением плановых обслуживаний пожарных автомобилей и обслуживанием их в минимальное время после пожара. Для обеспечения боевой готовности пожарных частей большое значение имеет правильная организация хранения пожарного оборудования (кислородно-изолирующих противогазов, напорных рукавов и т.д.), запасов горючесмазочных материалов, пенообразователя и т.д.

Обслуживание пожарных автомобилей и хранение пожарного оборудования производится в пожарных депо и на территории пожарных частей. В пожарных частях размещаются также учебный городок, бензозаправочная станция, а в военизированных пожарных частях – казармы для личного состава. На территории некоторых частей возможно размещение учебно-тренировочных объектов гарнизонного значения (например, дымокамер, спортивных комплексов и др.).

Пожарное депо – это здание, в котором размещаются дежурный караул пожарной части, пожарные автомобили и пожарное оборудование. Пожарное депо (рис. 6) должно иметь гараж, пункт связи, аккумуляторную, пост или базу газодымозащитной службы (ГДЗС), кабинеты начальствующего состава, учебные классы, комнаты отдыха дежурной смены и т.д.

19

14

13

12

15

15

21

20

15

17

18

16

1

11

2

3

10

5

4

9

8

7

6



Рис. 6. Пример планировки пожарного депо:

А – фасад; Б – план первого этажа нового депо: 1 – гараж; 2 – кабинет начальника части; 3 – канцелярия; 4 – кабинет заместителя начальника части; 5 – помещение общественных организаций; 6 – комната для инструктажа; 7 – комната инструкторов;8 – электрощитовая; 9 – аккумуляторная; 10 – пункт связи; 11 – аппаратная; 12 – уголок безопасности движения; 13 – контрольный пост; 14 – мастерская поста технического обслуживания; 15 – кладовая; 16 – компрессорная; 17 - сушка рукавов; 18 – учебная башня; 19 – мойка рукавов; 20 – сушка одежды; 21 – гимнастический зал

В связи с организацией централизованного обслуживания рукавов в гарнизонах во вновь строящихся пожарных депо помещения для обслуживания пожарных рукавов не предусматриваются.

Пожарное депо проектируют на 2, 4 и 6 пожарных автомобилей. В пожарных депо крупных гарнизонов пожарной охраны может устанавливаться 8 и более пожарных автомобилей. При проектировании пожарного депо на 2 автомобиля площадь земельного участка пожарной части должна быть не менее 2500 м2. При большем числе автомобилей N его площадь определяется ориентировочно по формуле

S = 1000 N,

где S – площадь земельного участка, м2 .

Пожарные депо должны размещаться так, чтобы обеспечивался безопасный, удобный и быстрый выезд пожарных автомобилей.

Здания депо должны проектироваться не ниже III степени огнестойкости. Планировка депо должна обеспечивать быстрый и безопасный сбор личного состава по боевой тревоге и выезд пожарных автомобилей в минимально короткое время.

Аппаратура пожарной сигнализации и связи, а также аккумуляторная размещаются в специальном помещении, примыкающем к гаражу с правой стороны. В примыкающей к гаражу стене устраивается окно размером 0,5х0,75 м, располагаемое напротив кабины водителя пожарного автомобиля, через которое выдается путевой лист и ведется наблюдение за выездом пожарных автомобилей.

Помещение дежурного караула, как правило, располагается на первом этаже за задней стеной гаража или на втором этаже. При расположении на первом этаже выходы в гараж делают из расчета один выход размером 1,2х2 м на каждый пожарный автомобиль. При размещении помещения для дежурного караула на втором этаже, кроме общей лестницы, устраивают спусковые металлические столбы в гараж из расчета 1 столб на 7 человек. Спусковые столбы диаметром 100 мм должны иметь совершенно гладкую поверхность. У основания столбов должны быть уложены мягкие маты.

Мойка и сушка рукавов производятся, как правило, в шахте наблюдательной вышки. Площадь сушильных шахт определяется из расчета0,16 м2 на один рукав, но не менее 2,4 м2 на шахту.

Высота шахты от пола до блоков, на которых подвешивают рукава, может быть 12 м при подвеске рукавов на половину их длины и 22 м при подвеске рукавов на всю длину. Высота помещения над блоками должна быть не менее 2 м.

В нижней части сушильной шахты устанавливается моечная машина, резервуар для мойки рукавов, калориферная установка. Для сушки рукавов можно использовать инфракрасные излучатели, которые устанавливают в специальном помещении.

Планировка и оборудование должны за минимальное время обеспечивать приведение пожарных автомобилей в боевую готовность. При этом можно ориентироваться на трудоемкость работ (в чел.-мин):

Техническое обслуживание52

Замена 7 рукавов20

Заправка водой 8Заправка пенообразователем10Мойка автомобиля20

____________

Всего 110

Принимая во внимание, что отделение автоцистерны может состоять из 6 человек, минимальная продолжительность обслуживания после пожара составляет около 20 мин.

Пожарные депо располагаются на участках с отступом от красной линии застройки по фронту ворот гаража не менее чем на 15 м. Площадь перед гаражом должна быть заасфальтирована или замощена и иметь небольшой уклон от порога ворот к красной линии.

Гаражи пожарного депо предназначены для обслуживания пожарных автомобилей и содержания их в режиме дежурства. В гаражах принят тупиковый или прямоточный способы расстановки пожарных автомобилей. При тупиковом способе автомобиль заезжает на стоянку задним ходом. Каждая стоянка имеет свои ворота, желательно с автоматическим приводом открывания. Для обслуживания пожарных автомобилей предусматривается осмотровая канава.

При проектировании гаражей и постов технического обслуживания размеры помещения определяются в зависимости от габаритов пожарных автомобилей. Некоторые планировочные размеры, м, указанные в СНиП П-93-74, приведены ниже:

Глубина гаража на 1 пожарный автомобиль не менее 15

Высота от пола до выступающих конструкций перекрытия не менее 3,8

Расстояние между осями автомобиля 5,2

Расстояние от автомобиля до грани колонны 1,5

Расстояние от автомобиля до передней стены 1,0

Расстояние от крайнего правого по выезду и левого автомобиля

до стены1,5

Расстояние от автомобиля до задней стены 2,0

Пожарные депо оборудуются центральным отоплением и вентиляцией. Кроме общей вентиляции в гаражах предусматриваются газоотводы для удаления отработавших газов. Температура в гаражах должна поддерживаться не ниже +16 оС. При этом обеспечиваются комфортные условия для обслуживания пожарных автомобилей и пожарного оборудования, а также надежный запуск двигателей. Для уменьшения продолжительности работы двигателя в режиме прогрева после его пуска целесообразно на стоянках оборудовать местный индивидуальный подогрев двигателя, что способствует повышению скорости движения пожарного автомобиля после выезда.

Организация дежурства боевых подразделений должна обеспечиватьвысокую боевую готовность и оперативную подвижность пожарныхавтомобилей.

4. ЗАДАЧИ КУРСА «ПОЖАРНАЯ ТЕХНИКА»

В системе Государственной противопожарной службы пожарная техника занимает особое место. Она составляет материальную основу механизации работ по тушению пожаров.

Эффективное применение пожарной техники требует глубокого знания конструкции оборудования, механизмов и машин, их технических возможностей и рациональных режимов работы. Их параметры определяют тактико-технические характеристики пожарных машин. Поэтомупервой задачей курса «Пожарная техника» является всестороннее изучение конструкций пожарных машин и их тактико-технических характеристик.

Пожары возникают в случайные, непредсказуемые промежуткивремени. Ущерб от огня будет тем меньше, чем скорее начнется тушение пожара. Поэтому в пожарных частях пожарные машины должны содержаться в состоянии высокой технической готовности к использованию. Следовательно, изучая курс «Пожарная техника», необходимо решить вторую задачу, которая включает приемы и методы поддержания состояния непрерывной технической готовности пожарных машин.

При эксплуатации пожарных машин изнашиваются рабочие поверхности деталей механизмов. Вследствие этого ухудшаются параметры тактико-технических характеристик пожарных машин. Это, в свою очередь, приводит к снижению эффективности тушения пожаров. Изнашивание деталей механизмов и несоблюдение рекомендованных режимов эксплуатации могут приводить к отказам в их работе. Поэтому при изучении курса должна решаться третья задача – освоение основ организации прове-дения технического обслуживания и ремонта пожарной техники, обеспе-чивающих ее надежную работу на пожарах и требуемую долговечность.

При следовании на пожар, его тушении, а также обслуживании и ре-монте пожарных машин вследствие неправильных приемов управленияими, несоблюдения режимов их эксплуатации могут проявляться факторы,влияющие на безопасность труда и здоровье членов боевого расчета. По-этому при изучении курса должна решаться четвертая задача – организация обеспечения охраны труда пожарных.

Пожарная техника непрерывно совершенствуется, применяются новые механизмы и оборудование, создаются новые машины. Поэтому становится важной еще одна задача: при изучении курса необходимо научиться не только осваивать пожарную технику, но и выработать умение обучать подчиненных.

И наконец, последняя задача курса состоит в обосновании приемов и методов, обусловливающих экономное расходование всех материальных ресурсов.

Р а з д е л 1

ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ

Глава 1

БОЕВАЯ ОДЕЖДА ПОЖАРНЫХ, ОБОРУДОВАНИЕДЛЯ ВЫПОЛНЕНИЯ ПЕРВООЧЕРЕДНЫХАВАРИЙНО-СПАСАТЕЛЬНЫХ РАБОТ

Пожарные автомобили для выполнения своих функций укомплектовываются пожарно-техническим вооружением (ПТВ) различного назначения.

Пожарные автомобили (ПА) общего применения – это, как указывалось, автоцистерны (АЦ). Они составляют основу всего парка пожарной техники страны и применяются при тушении практически всех пожаров. Поэтому каждая АЦ укомплектовывается разнообразным оборудованием, обеспечивающим спасание людей, доступ к очагам горения и тушение пожаров, подачу к ним огнетушащих веществ.

Все ПТВ на АЦ можно разделить на две группы. Первую из них составляет оборудование, снимаемое с пожарного автомобиля.

Вторую группу ПТВ составляет оборудование, не снимаемое с автомобиля. К нему относятся: пожарные насосы, вакуумные аппараты, емкости для огнетушащих веществ и др.

Сложность тушения пожаров и возможные опасности для боевых расчетов, выполняющих различные работы, требуют различного специального оборудования. Поэтому целесообразно ПТВ различного назначения классифицировать следующим образом:

боевая одежда для обеспечения безопасной работы пожарных и снаряжение (пояса пожарные, поясные карабины, топор, фонарь);

теплоотражательные и теплоизолирующие костюмы;

оборудование и инструмент для самоспасания и спасания людей;

инструмент для выполнения первоочередных аварийно-спасательных работ;

средства подачи огнетушащих веществ в очаги горения (пожарные насосы, пожарные рукава, рукавное оборудование).

Боевая одежда и снаряжение – это форма пожарных для несения службы и выполнения боевых действий при тушении пожаров. Такие средства, как теплоотражательные костюмы, дыхательные аппараты используются только в специфических условиях. Ими, как и другими ПТВ, укомплектовываются пожарные автомобили.

1.1. Боевая одежда и снаряжение пожарных

Тушение пожаров производится в специфической (сложной) обстановке. В общем виде она характеризуется рядом обстоятельств, воздействие которых в определенных условиях может негативно сказываться на проведении пожарными боевых действий. К таким обстоятельствам относятся высокие температуры и пламя, загрязнение атмосферы продуктами горения, возможное механическое воздействие на человека элементами разрушающихся конструкций. Эти весьма существенные обстоятельства называют опасными факторами пожара (ОФП). Если их параметры превышают некоторые критические значения, то они могут быть причинами травм пожарных, отравления и даже летальных исходов. Для ослабления влияния ОФП на пожарных разработана система и средства их защиты. К ним относятся: средства индивидуальной защиты органов ды-хания (СИЗОД), дымососы, а также экипировка пожарных.

Экипировка включает: боевую одежду пожарных (БОП), каску, шлем, средства индивидуальной защиты рук (СИЗР) и специальную обувь.

В сложных условиях пожаров используются специальная защитная одежда изолирующего типа (СЗО ИТ) и специальная защитная одежда пожарных от повышенных тепловых воздействий (СЗО ПТВ). Вся экипировка пожарных изготовлена из материалов, обладающих высокой механической прочностью, теплостойкостью и водонепроницаемостью. Эти свойства материалов обеспечивают защиту кожных покровов человека от ОФП, а также от климатических воздействий.

Конструкция экипировки и используемые материалы позволяют пожарным эффективно выполнять все виды работ при подготовке и тушении пожаров и выполнении первоочередных аварийно-спасательных работ. Они включают надевание боевой одежды и снаряжения, проведение боевого развертывания от пожарных автомобилей, подъем по лестницам различного назначения.

Боевая одежда пожарных (БОП). Ее необходимо использовать со снаряжением пожарного: пожарным спасательным поясом, каской, СИЗОД, СИЗР, специальной обувью, радиостанцией, а также теплоотражательным комплектом (СЗО ИТ или СЗО ПТВ).

БОП состоит из пакета материалов и тканей, включающих ткани верха, водонепроницаемого слоя и съемной теплоизоляционной подкладки.

Комплект БОП включает брюки (или полукомбинезон) и куртку со съемными теплоизоляционными подкладками. Их конструкция обеспечивает возможность надевания, не снимая обуви пожарной специальной, в течение времени, указанного в «Нормативах по пожарно-строевой подго-товке» (рис. 1.1). Конструкция БОП обеспечивает предотвращение про-никновения в подкостюмное пространство воды и других жидкостей.

Рис. 1.1. Боевая одежда пожарных

Цветовое решение БОП (цвет материала верха – темно-синий, черный), а также светоотражающий и флюоресцирующий материал накладок обеспечивают возможность быстрого обнаружения пожарного в условиях ограниченной видимости (задымление, слабое освещение и т.п.).

БОП по уровню защиты от тепловых воздействий подразделяют на три уровня.

БОП 1-го уровня обеспечивает защиту от высокой температуры, тепловых потоков большой интенсивности и возможных выбросов пламени. Она изготавливается из термостойких тканей со специальными пропитками или покрытиями.

БОП 2-го уровня защищает от повышенных температур и тепловых потоков. Изготавливается одежда из парусины со специальными пропитками.

БОП 3-го уровня защищает от тепловых воздействий невысокой интенсивности и изготавливается из искусственной кожи.

БОП изготавливают двух видов: для начальствующего и рядового состава. Различают их разнообразием конструктивных элементов: полос, нашивок, кокеток. Для начальствующего состава одежда имеет удлиненную куртку, накладки и нашивки в верхней части рукава куртки.

БОП каждого вида изготавливается не менее трех условных размеров.

Требования, предъявляемые к теплофизическим материалам и тканям, приводятся в табл. 1.1.

Таблица 1.1



п/п Назначение показателя Размер-

ность Параметры для уровней защиты

1 2 3

1 Устойчивость к воздействию теплового потока:

15,0 кВт/м2, не менее

40,0 кВт/м2, не менее с

с 240

5 240

- 240

-

2 Устойчивость к воздействию открытого пламени, не менее с 15 5 5

3 Диапазон рабочих температур оС –40… +300 –40… +200 –40… +200

Окончание табл. 1.1



п/п Назначение показателя Размер-

ность Параметры для уровней защиты

1 2 3

4 Устойчивость к воздействию температуры окружающей среды:

до 300 оС, не менее

до 200 оС, не менее с

300

- -

240 -

180

5 Теплопроводность Вт/(м2с) 0,06 0,06 0,06

6 Устойчивость к контакту с нагретыми до 400 оС поверхностями с 7 3 -

7 Масса комплекта кг 5–7 6 5

8 Средний срок службы лет 2 2 2

Для северных условий изготовляют специальную БОП 1-го и 3-го уровней защиты, куртки которых имеют по две съемные теплоизоляционные подкладки.

Каски пожарные – это индивидуальные средства, обеспечивающие защиту головы, шеи и лица пожарных от термических и механических воздействий агрессивных сред, воды, а также от неблагоприятных климатических воздействий.

Основные части каски: корпус 1, лицевой щиток 2, внутренняя оснастка, подбородочный ремень 3, пелерина 4.

1

2

4

3

Рис. 1.2. Каска пожарного:1 – корпус; 2 – лицевой щиток;3 – подбородочный ремень;4 – пелерина

Пелерина защищает шею и затылок от теплового излучения, открытого пламени, падающих искр. Закреплена она в затылочной области (рис. 1.2).

Внутренняя оснастка обеспечивает фиксирование каски на голове. Этим совместно с корпусом каски обеспечивается равномерное распределение нагрузки на голове и поглощается кинетическая энергия удара.

Каски выдерживают вертикальный удар тупого предмета с энергией 80 Дж. При вертикальном ударе тупым предметом с энергией 50 Дж усилие, передаваемое каской на голову, не превышает 5 кН.

Каска сохраняет защитные свойства при температурах окружающей среды 150 и 200 оС в течение 30 и 3 мин, соответственно.

Марки касок (КП-80; КЗ-94, КП-92). Каски устойчивы к воздействию тепловых потоков 5 и 40 кВт/м2 в течение 4 мин и 5 с, соответственно. При этом температура под каской не превышает 50 оС.

Каски сохраняют прочностные свойства после воздействия на них воды, пенообразователя, трансформаторного масла, серной кислоты, едкого натра.

Шлем пожарного (рис. 1.3) – индивидуальное средство снаряжения, предназначенное для защиты головы от воздействия повышенных температур и кратковременно от открытого пламени.

1

2

3

4

Рис. 1.3. Шлем пожарного:

1 – корпус; 2 – забрало;3 – подбородочный ремень;4 – пелерина

Шлем представляет собой корпус 1 с убирающимся внутрь забралом 2 и расположенным внутри амортизирующим подшлемником и включает подбородочный ремень 3, пелерину 4.

Шлем пожарного (ШПМ) характеризуется амортизацией удара энергией 50 Дж и сопротивлением прокалыванию при ударе энергией30 Дж. Он устойчив к воздействию теплового потока мощностью не более5 кВт/м2, имеет массу 1,2 кг, диапазон рабочих температур –40 … +150 оС.

Спецобувь – специальная защитная обувь, характеризующаяся комплексом защитных физиолого-гигиенических и эргономических показателей, обеспечивающих безопасное проведение боевых действий, аварийно-спасательных работ и защиту от климатических воздействий.

Материалом для их верха являются различные виды термостойких и водонепроницаемых кож или других материалов с аналогичными свойствами.

Спецобувь обеспечивает защиту носочной части ноги пожарного от температуры не менее 200 оС и теплового потока до 5 кВт/м2 в течение не менее 5 мин.

Спецобувь изготовляют с 38 по 47 размер. Масса обуви размера 42 должна быть не более 1600 г.

Для спецобуви пожарных в северных районах выдаются по две пары утеплителей массой до 200 г и ресурсом работы до 100 часов. Утеплители можно стирать или производить химчистку.

Кожаная и резиновая спецобувь для северных районов обеспечивает защиту ног при воздействии температуры до –60 оС на протяжении 12 и1 ч, соответственно.

Средства индивидуальной защиты рук (СИЗР) пожарных обеспечивают защиту рук пожарных от опасных факторов пожара, воздействия воды и неблагоприятных климатических условий. СИЗР включают ряд элементов. Крага – часть рукавицы, расположенная выше запястья, обеспечивает дополнительную защиту от теплового и механического воздействий. Напалок обеспечивает защиту пальца, а накладка на ладонную часть обеспечивает дополнительную защиту рук от механических воздействий.

Материал верха СИЗР: водонепроницаемый слой, теплоизоляционная прокладка и внутренний слой (обеспечивает гигиенические свойства) изготовлены из материалов с соответствующими свойствами.

СИЗР изготовляются в виде перчаток или двупалых рукавиц, они фиксируются на запястьях. Их конструкция обеспечивает выполнение всех видов работ при тушении пожаров и управлении СИЗОД.

В соответствии с НПБ 182-99 материалы и ткани для СИЗР должны удовлетворять ряду требований по устойчивости к воздействию:

температуры 300 оС, не менее 300 оС;

теплового потока плотностью:

5 кВт/м2, не менее 240 с;

40 кВт/м2, не менее 5 с;

открытого пламени, не менее 5 с.

СИЗР морозостойкие (до –50 оС), водонепроницаемые, устойчивы к воздействию слабых растворов кислот и щелочей.

Теплоотражательные и теплоизоляционные костюмы

В сложных условиях пожаров используются специальная защитная одежда пожарных от повышенных тепловых воздействий (СЗО ПТВ) и специальная защитная одежда изолирующего типа (СЗО ИТ).

СЗО ПТВ – средство индивидуальной защиты пожарных от:

интенсивного теплового излучения;

высоких температур окружающей среды;

кратковременного контакта с открытым пламенем;

вредных факторов пожара;

неблагоприятных климатических факторов.

В зависимости от степени тепловой защиты СЗО ПТВ могут быть трех типов (табл. 1.2).

Таблица 1.2

Тип исполнения Условия эксплуатации

Темпе-ратура, оС Время воздействия, с, не менее Тепловой поток, кВт/м2, не более Время воздействия, с, не менее Допустимое время воздействия открытого пламени, с, не менее

Тяжелый 200

800 960

20 18

25

40 960

240

120 30

Полутяжелый 200 600 10

18 900

600 20

Легкий 200 480 10 480 15

Конструкция СЗО ПТВ позволяет ее использовать с СИЗОД, пожарно-техническим вооружением, радиостанцией, обувью пожарной.

Тяжелый тип СЗО ПТВ типа ТК-800 изготовляется из пакета материалов, состоящего не менее чем из трех слоев: верха, теплоизоляционной подкладки и внутреннего слоя. Последние два слоя могут быть совмещены. Верх изготавливается из огнестойких теплоотражательных металлизированных материалов. В состав комплекта входят: комбинезон, капюшон с иллюминатором, рукавицы, сапоги (рис. 1.4).

Рис. 1.4. Теплозащитная одежда пожарных ТК-800

Одежда типа ТК-800 может использоваться до –40 оС. Ее масса должна быть меньше 18 кг, время экипировки с помощью двух ассистентов – не более 3 мин.

Полутяжелый тип СЗО ПТВ представляют комплекты ТОК-200 и ТОК-200-26. Они включают: куртку, брюки, капюшон со стеклом, трехпалые перчатки, бахилы. При необходимости возможно использовать изолирующий противогаз. Время экипировки не более 70 с, масса – не более 10 кг. Комплект можно использовать до –40 оС.

Легкий тип СЗО ПТВ представлен комплектом средств локальной защиты. С его помощью осуществляется дополнительная защита рук, головы и органов дыхания от локальных тепловых воздействий. Комплект включает: капюшон, трехпалые перчатки, бахилы и используется в комплекте с боевой одеждой. Его масса не превышает 3 кг, а время экипировки – не более 30 с.

СЗО ИТ – предназначена для изоляции покровов тела человека от неблагоприятного влияния различных факторов окружающей среды, а также климатических воздействий. Комплекты одежды этого типа разделяются на два вида:

без тепловой защиты, для работы при t до +40 оС;

с обеспечением тепловой защиты.

Первый тип одежды – комплект специальной защитной одежды (СЗО-1) обеспечивает защиту от ионизирующих излучений, радиоактивности, проникающей через органы дыхания и пищеварительный тракт, а также от радиоактивного загрязнения поверхностей тела.

Этот комплект включает: защитный комбинезон, капюшон, шлем и фартук, а также пятипалые перчатки с крагами, скафандр с наружным иллюминатором и трехпалыми съемными рукавицами, гигиеническое белье, защитные трусы и сапоги.

Комплект обеспечивает не менее чем двухкратное ослаблениеγ-излучения с энергией 200 Кэв, и не менее 50-кратного ослабленияβ-излучения с энергией 2 Мэв.

Время защитного действия при температуре меньше или равной100 оС не более 10 мин, масса комплекта 21,5 – 23,5 кг, время экипировки не более 300 с.

Второй тип одежды – агрессивностойкие комплекты изолирующие (АКИ). Он предназначен для защиты как от тепловых воздействий, так и химически агрессивных сред. К таким средам относятся различной концентрации растворы различных кислот, едкого калия, аммиака. Его можно использовать при плотностях тепловых потоков не более 5 кВт/м2. Допустимое время работы при температуре от –40 до +40 оС не более40 мин, а при температуре от +40 до +100 оС – не более 20 мин. Время защитного действия при контакте с открытым пламенем – не более 3 с.

АКИ включает: скафандр наружный, рукавицы для него, комбинезон теплоизолирующий со шлемом, перчатки трехпалые специальные и специальные сапоги резиновые.

Время экипировки с помощью одного ассистента не более 3 мин. Масса комплекта до 9 кг. Время аварийной разгерметизации не более 30 с.

1.3. Оборудование и инструмент для самоспасания и спасания людей

Оборудование и инструмент делят на две группы: лестницы и спасательные средства. К спасательным средствам относятся: пожарный пояс, пожарный карабин и спасательная веревка.

Лестницы и спасательная веревка являются частью укомплектования автоцистерны. Пояс и пожарный карабин входят в снаряжение пожарного.

Ручные пожарные лестницы предназначены для подъема пожарных на верхние этажи зданий и работы внутри помещений. В пожарной охране России применяются три вида ручных пожарных лестниц: лестница штурмовая, лестница-палка и трехколенная выдвижная лестница.

Общие требования для изготовления ручных пожарных лестниц и их сертификационных испытаний обусловлены НПБ 171-98.

Для всех типов лестниц общими являются следующие требования. Шаг ступени лестницы должен быть не более 355 мм, а ширина лестниц в свету должна быть не менее 250 мм.

Лестница штурмовая – лестница ручная пожарная, конструктивно состоящая из двух параллельных тетив, жестко соединенных опорными ступеньками, и оборудованная крюком для подвески на опорную поверхность (рис. 1.5).

Тетивы 1 и 4 лестницы соединены тринадцатью ступенями 2 и 5. Кроме того, они в пяти местах стянуты металлическими стяжками 3 и 6. На трех верхних ступенях закреплен крюк 7. Сечение крюка увеличивается по направлению к хвостовой части, что приближает его к телу равного сопротивления по изгибу.

Лестницы могут быть изготовленными из дерева или металла.

На внутренней стороне деревянных лестниц с обеих сторон ступеней проложены в пазах стальные канатики, закрепленные за верхнюю и нижнюю стяжки. Канатики предназначены для предотвращения несчастных случаев при изломе тетив.

На нижних концах тетив установлены башмаки, а на верхних – наконечники.

Металлические лестницы изготавливаются из алюминиевого сплава Д16Т. Масса лестниц не более 10 кг.

Лестницы штурмовые используются пожарными для подъема на этажи зданий через окна или балконы. Для обеспечения безопасности они также применяются при работе на крутых скатах крыш.

Рис. 1.6. Лестница-палка:1 и 2 – тетивы; 3 – ступени; 4 – шарнир;5 – наделка; 6 – стяжка; 7 – наконечник;8 – металлическая пластина

1

2

4

3

5

6

7

8

Рис. 1.5. Лестница штурмовая:

1 и 4 – тетивы; 2 и 5 – ступени;4 – шарнир; 3 – стяжка; 6 – металлические стяжки; 7 – крюк

1

2

3

4

5

6

7

Лестница-палка (рис. 1.6) – лестница ручная складная, конструктивно состоящая из двух параллельных тетив, шарнирно соединенных опорными ступенями. Тетивы 1 и 2 лестницы соединены восемью ступенями 3. Концы ступеней имеют металлическую оковку и втулки, через которые проходят оси для поворота ступеней. Шарнирное соединение 4 ступеней с тетивами позволяет их складывать, перемещая одну тетиву относительно другой.

Одни концы тетив имеют деревянные наделки 5. За них убирают другую тетиву при складывании лестницы. Наделки прикреплены к тетивам стяжками 6 и обтянуты наконечниками 7. Другие концы тетив скошены под углом 45о и защищены металлическими пластинами 8.

В сложенном состоянии лестница представляет собой палку с закругленными и окованными концами. Масса лестницы 10,5 кг.

Рис. 1.7. Трехколенная выдвижная лестница:1 – стальные скобы; 2 – цепь; 3 – поперечные стяжки;4 – стенной упор; 5 – блоки; 6, 7 и 8 – колена; 9 – башмак

1

2

3

5

6

7

5

4

8

9

Лестница-палка предназначена для работы в помещениях, подъема пожарных на первый этаж через оконные проемы горящих зданий и сооружений, а также для учебно-тренировочных занятий.

Трехколенная выдвижная лестница – лестница ручная пожарная, состоящая из трех параллельно связанных колен и оборудованная механическим устройством для перемещения их относительно друг друга в осевом направлении в целях регулирования ее длины.

Лестница (рис. 1.7) состоит из трех телескопически соединенных колен 6, 7 и 8, механизма выдвигания и механизма останова. Каждое колено состоит из двух тетив, соединенных двенадцатью ступенями. Тетива нижнего колена 8 стянута внизу, посередине и наверху стяжками 3.

Колена соединены между собой стальными скобами 1. Нижние концы тетив нижнего колена имеют стальные башмаки 9, а верхние концы верхнего колена имеют стенные упоры 4. Среднее колено выдвигается цепью 2.

Механизм выдвигания работает в соответствии с принципиальной схемой, представленной на рис. 1.8. Среднее колено 7 (см. рис. 1.8) соединяется с первым коленом 8 цепью 2, огибающей ролики 5 и верхний блок нижнего колена. При перемещении цепи по часовой стрелке среднее колено 7 будет выдвигаться вверх. Верхнее колено 6 тросом 3 через блок среднего колена 7 соединено с центром верхнего блока первого колена 8. При выдвигании среднего колена 7 будет перемещаться вверх и верхнее колено 6.

Рис. 1.8. Схема механизмавыдвигания:1 – башмак; 2 – цепь;3 – трос; 4 – стенной упор;5 – ролики; 6, 7, 8 – колена

2

5

1

8

7

6

4

3

Среднее колено по отношению к нижнему совершает относительное движение. Обозначим его скорость через v''r . Верхнее колено, в свою очередь, совершает относительное движение по отношению к среднему колену со скоростью v'''r, в то же время перемещается вместе со средним коленом в переносном движении. Таким образом, абсолютная скорость v''' движения верхнего колена равна

v''' = v"r + v'''' r. (1.1)

При равенстве длины всех трех колен абсолютная скорость выдвигания верхнего колена равна удвоенной скорости выдвигания среднего колена, т.е.

v''' = 2 v"r.

Рис. 1.9. Направляющий уголок и упор:1, 2 – полки; 3 – упор;4 – отверстие

4

3

1

2

Для фиксирования выдвинутой лестницы на заданной высоте применяется механизм останова. Он установлен на тетиве второго колена на нижней его части. Механизм состоит из двух частей: направляющего угольника и упора, а также специального валика с двумя упорами и рычагом.

Тетиву колена охватывает уголок (рис. 1.9) с двух сторон.

Полка 1 располагается на внутренней широкой стороне тетивы. Полка 2 располагается на узкой стороне тетивы, выступая из нее на 10 мм. Эта выступающая часть входит в шпунт первого колена и служит направляющим. Отогнутая часть 3 обращена внутрь лестницы и является упором для механизма останова. Уголки установлены на обеих тетивах. Отверстия 4 в них служат подшипниками валика 1 механизма останова (см. рис. 1.10). На концах валика 1 имеются по одному кулачку 4, которые в сочетании с упорами 2 (поз. 3 на рис. 1.9) производят закрепление выдвинутых колен.

Посередине валика под углом около 45о к полости кулачков имеется выступающий палец 6 с проушиной на конце. К этой проушине прикреплен конец цепи 7 (поз. 2 на рис. 1.8). Если в вертикальном положении лестницы подтянуть цепь против часовой стрелки вниз, то валик 1, а также кулачок 4 повернутся так, что окажутся в плоскости ступеней второго колена и не будут мешать выдвиганию колен лестницы.

2

1

2

3

4

3

1

6

7

8

5

4

6

4



Рис. 1.10. Механизм останова:

1 – валик; 2 – упор (поз. 3 на рис. 1.9); 3 – полка (поз. 1 на рис. 1.9); 4 – кулачок;5 – тетива; 6 – выступающий палец; 7 – цепь (поз. 2 на рис. 1.8);8 – ступень первого колена

Для закрепления колен лестницы, выдвинутой на заданную высоту, надо отрывисто подтянуть цепь в обратном направлении, т.е. снизу вверх. При этом начнется сдвигание колен лестницы и, кроме того, поворот валика 1. Палец 6 опустится вниз, а кулачки 4 поднимутся вверх до упора 2. При сдвигании колен кулачки 4 встретят на своем пути ступень 8 первого колена, упрутся в них и задержат сдвигание лестницы. При этом вся нагрузка передается на ступень 8 первого колена.

Рис. 1.11. Пояс пожарныйспасательный:

1 – люверсы; 2 – ленты; 3 – кожаная облицовка; 4 – полукольцо;5 – кожаный хомут; 6 – пряжка

1

2

3

6

5

4

Пояс пожарный спасательный – индивидуальное приспособление, предназначенное для страховки при работе на высоте, спасания людей и самоспасания пожарных во время тушения пожаров, первоочередных аварийно-спасательных работ, а также для топора пожарного и карабина.

Пожарный пояс (рис. 1.11) состоит из ленты 2, пряжки 6, кожаной облицовки 3 с пятью парами люверсов (укрепленных отверстий 1 на конце пояса).

Рис. 1.12. Карабин пожарный:

1 – крюк; 2 – замковое соединение;3 – затвор; 4 – откиднойзамок-затвор; 5 – шарнирноесоединение; 6 – рабочий участок

1

2

3

4

5

6

Карабин пожарный – карабин (рис. 1.12), входящий в состав снаряжения пожарного и предназначенный для страховки пожарного при работе на высоте, а также для спасания и самоспасания с высотных уровней. Он состоит из силовой скобы крюка 1, воспринимающего рабочую нагрузку, замкового соединения 2, обеспечивающего соединение крюка и откидной части затвора 4. Она шарниром 5 соединена с крюком 1. Откидная часть затвора замыкателем 3 (муфта с резьбой) запирает замковое соединение. Рабочий участок карабина обозначен цифрой 6.

Веревка пожарная спасательная – веревка, предназначенная для вооружения подразделений ГПС, используемая для страховки пожарных при тушении пожаров и проведения связанных с ними первоочередных аварийно-спасательных работ. Веревки могут быть обычного исполнения (ВПС) и термостойкие (ТПВ). Веревки изготовляют из высококачественного льна или из синтетических волокон. Длина спасательной веревки 25–30 м. Хранят веревки в чехлах из водонепроницаемой ткани.

Веревки должны храниться в закрытых помещениях (отсеках автомобиля) с влажностью не более 70 %, защищенных от прямых солнечных лучей, масла, бензина и других растворителей, на расстоянии не менее 1 м от отопительных приборов.

Испытание оборудования осуществляется по нормативам, обусловленным Правилами по охране труда в подразделениях ГПС (табл. 1.3).

Таблица 1.3

Наименование ПТВ Периодич-ность испытаний Условия испытаний Критерий годности

Установка Нагрузка, кгс Продолжительность, мин Выдвижная лестница 1 раз в году и после ремонта На твердом грунте, под углом 75 о прислоняются к стене На каждое колено по 100 2 Не иметь повреждений. Выдвигание и складывание без заеданий

Лестница-палка Посередине 120 Не иметь повреждений и легко складываться

Штурмовая лестница Подвешивается за крюк На второй снизу ступени на каждую тетиву 80 Не иметь трещин и деформаций

Окончание табл. 1.3

Наименование ПТВ Периодич-ность испытаний Условия испытаний Критерий годности

Установка Нагрузка, кгс Продолжительность, мин Спасательная веревка 1 раз в 6 месяцев Распустить на длину. Подвесить 350 5 Отсутствие видимых повреждений. Удлинение менее 5 %

Пояса пожарные, спасательные поясные карабины 1 раз в году Подвесить на балке Не иметь разрывов и повреждений. Карабин не должен иметь повреждения и изменения формы

Рукавные задержки 1 раз в году 200 Крюк не должен иметь повреждений, а тесьма разрывов

1.4. Инструмент для выполнения первоочередных

аварийно-спасательных работ

Первоначальные аварийно-спасательные работы (ПАСР), связанные с тушением пожаров, представляют собой боевые действия по спасанию людей и оказанию первой доврачебной помощи пострадавшим, а также эвакуацию имущества.

Эти работы в основном выполняются боевыми расчетами с использованием штатных средств спасания и немеханизированного инструмента, которыми укомплектованы пожарные автоцистерны и автонасосы.

Немеханизированный инструмент используется также для разборки строительных и технологических конструкций для выявления скрытых очагов горения, выпуска дыма, предотвращения горения.

К ручному немеханизированному инструменту относятся: пожарные багры, ломы, крюки, топоры, столярные ножовки, ножницы для резки электропроводов. По желанию заказчика в комплект оборудования автоцистерны может включаться и другой инструмент, например гидравлические ножницы для резки арматуры. На рис. 1.13 представлены общие виды багров и ломов.

Пожарные багры предназначены для разборки кровель, стен, перегородок, стропил и других частей конструкций зданий и растаскивания горючих материалов. На пожарах используют багры двух типов.

Багор пожарный металлический (БПМ) (рис.1.13, а) состоит из крюка, копья, металлического стержня и рукоятки. Стержень изготовлен из трубы диаметром 20 мм. Крюк и копье изготовлены из стали Ст45 и подвергаются термической обработке. Крюк и металлическое кольцо приварены к стержню. Этими баграми укомплектовываются пожарные автомобили.

а

б

в

г

д

е



Рис. 1.13. Багры и ломы пожарные:

а – багор металлический; б – багор насадной; в – лом тяжелый; г – лом с шаровойголовкой; д – лом легкий; е – лом универсальный

Багор пожарный насадной (БПН) состоит из деревянного стержня, на который насаживается и крепится металлический крюк с копьем (рис.1.13, б). Деревянные стержни изготавливаются из твердой древесины: березы, граба, бука.

Основные характеристики багров приведены в табл. 1.4.

Таблица 1.4

Обозначение багра Длина багра, мм Длина крюка, мм Масса, кг

БПМ 2000 180 5

БПН 630 180 2

Пожарные ломы предназначены для вскрытия строительных конструкций и входят в комплект пожарных автомобилей.

Лом пожарный тяжелый (ЛПТ) предназначен для тяжелых рычажных работ по вскрытию конструкций, имеющих плотные соединения (полы, дощатые фермы, перегородки), а также для вскрытия дверей.

Лом представляет собой металлический стержень диаметром 28 мм. Его верхняя часть (рис.1.13, в) изогнута и образует четырехгранный крюк, а на нижней части имеется заточка на два канта.

Пожарный лом (ПШ) с шаровой головкой рис. 1.13, г) предназначен для обивки штукатурки, скалывания льда с крышек колодцев гидрантов.

Лом представляет собой круглый стержень, на верхнем конце которого имеется шар. Диаметр его 50 мм, плоский срез имеет диаметр 25 мм. На нижнем конце лома имеется заточка на два канта с шириной лезвия 12,5 мм.

Лом пожарный легкий (ЛПЛ) используют для расчистки мест пожара, вскрытия кровель, обшивки и в других подобных работах. Он представляет собой металлический стержень диаметром 25 мм, верхний конец которого отогнут под углом 45о и заострен на четыре грани так, что образуется плоское лезвие шириной 10 мм. Длина заточки 80 мм (рис. 1.13, д). Нижний конец лома также четырехгранный. На расстоянии 200 мм от верхнего конца имеется кольцо диаметром 30 мм для подвески лома.

Лом пожарный универсальный (ЛПУ) используется для открывания окон и дверей (рис. 1.13, е). Он представляет собой металлический стержень с двумя отогнутыми частями. Основные характеристики ломов указаны в табл. 1.5.

Таблица 1.5

Обозначение лома Длина лома, мм Длина крюка, мм Масса лома, кг

ЛТП 1200 20 6,7

ЛТЛ 1100 145 4,8

ЛТУ 600 - 1,5

Ломы изготавливаются из стали Ст45, заостренные их частиподвергаются термической обработке.

Пожарные крюки. В пожарной охране используются легкий пожарный крюк (рис. 1.14) и крюк для открывания крышек колодцев-гидрантов (рис. 1.15). Пожарные крюки входят в комплект пожарных автомобилей.

Рис. 1.14. Легкий пожарный крюк

Рис. 1.15. Крюк для открывания крышекколодцев пожарных гидрантов

Легкий пожарный крюк (ЛПК) предназначен для вскрытия конструкций внутри зданий и удаления их с места пожара. Крюк изготовлен из полосовой стали Ст45Н сечением 25х12 мм. Длина крюка 395 мм, ширина 225 мм. Верхний конец крюка имеет заточку на два конца, с другой стороны имеется ушко для навязывания веревки толщиной 14–17 мм и длиной1300 мм. Веревка заканчивается петлей длиной 500 мм. Масса крюка 1,5 кг.

Топор пожарный поясной предназначен для перерубания и разборки различных элементов деревянных конструкций горящих зданий. С его помощью пожарные могут передвигаться по крутым скатам кровель. Он может использоваться для открывания колодцев пожарных гидрантов. Топор входит в состав снаряжения бойцов и командиров пожарной охраны и переносится на спасательном поясе и называется поясным.

Рис. 1.16. Топор пожарныйпоясной:

1 – металлическая накладка;2 – лезвие; 3 – кирка; 4 - топорище

1

2

3

4

Топор пожарный поясной (рис. 1.16) имеет лезвие 2 и кирку 3. Его лезвие предназначено для разборки деревянных конструкций. Кирка используется для проделывания отверстий в кирпичных и бетонных конструкциях, передвижения пожарных по скатам крыш.

Полотно топора изготавливается из высокоуглеродистой стали У7, а его лезвие подвергается термической обработке. Топор насаживается на деревянное топорище 4 и закрепляется к нему металлическими накладками 1. Топорище изготавливают из твердых сортов древесины (береза, клен, ясень, граб, бук). Топорище не окрашивается, так как краска может покрывать поверхностные трещины. Длина топора составляет 350–380 мм, а его масса должна быть не более 1 кг.

Электрозащитные средства используются для отключения электрических проводов. Они входят в комплект для резки электрических проводов. В него входят: резиновые перчатки и галоши (боты), резиновый коврик и диэлектрические ножницы.

Диэлектрические ножницы предназначены для перерезания электрических проводов под напряжением (НРЭП). Рукоятки ножниц имеют электроизоляцию из резины. С помощью ножниц можно перерезать провода диаметром от 1 до 15 мм под напряжением до 1000 В. Они могут перерезать стальную проволоку диаметром до 6 мм. Габаритные размеры ножниц 560х260х60 мм, масса не более 3,5 кг.

1.5. Аварийно-спасательный инструмент с гидроприводом

При тушении пожаров возможны ситуации, когда для выполнения боевых действий по вскрытию конструкций потребуются средства более мощные, чем для проведения первоочередных аварийно-спасательных работ. К таким средствам относятся механизированные инструменты. Их можно разделить на две группы.

Первую группу составляют электропилы и электродолбежники. К ней также относят автогенорезательные установки, пневмодомкраты резино-кордовые и т.д. Ими комплектуют специальные ПА различного назначения.

Вторая группа включает АСИ с гидроприводом. Инструментами этой группы комплектуют как специальные ПА, так и автоцистерны и автонасосы.

Комплект АСИ включает источники энергии, блок управления и набор инструментов с высокими параметрами силовых характеристик.

Источники энергии представляют собой насосные станции с механическим приводом или поршневые насосы с ручным приводом.

Насосные станции предназначены для нагнетания рабочей жидкости в гидравлические системы АСИ. В качестве рабочей жидкости используется масло МГЕ-10А.

Современные насосные станции осуществляют подачу рабочей жидкости поршневыми насосами. Их приводами могут быть бензиновые двигатели внутреннего сгорания или электродвигатели, работающие от сети переменного тока с частотой 50 Гц при напряжении 220 В.

Насосные станции бывают одно- и двухпостовые, обеспечивающие работу одного или двух инструментов одновременно.

При относительно небольших размерах (площади 0,1–0,2 м2 и высоте до 0,5 м) станции имеют относительно малые массы (см. табл. 1.6), поэтому их можно подносить близко к месту работы. Некоторые параметры технических характеристик насосных станций представлены в табл. 1.6.

Таблица 1.6

Показатели Размерность Средние значения Пожоборонпром Вебер-гидравлика, Австрия

Рабочее давление МПа 25-80 80 63

Подача станции л/мин 0,25-1,1 0,89 -

Мощность двигателя кВт

Масса станции кг

Вместимость масляного бака л 1,5-15

Примечания:

1. В этой таблице и дальше указаны средние значения параметров характеристик насосных станций и инструмента, имеющихся на рынке.

2. В знаменателях указаны параметры для двухпостовых станций.

Ручные насосы предназначены для подачи рабочей жидкости в гидравлические системы АСИ и другие малогабаритные механизмы.

Ручные насосы используются там, где применение насосных станций нерентабельно или работа с ними опасна по технике безопасности. Они обычно двухступенчатые и развивают давление 80 МПа. В зависимости от параметра давления их масса находится в пределах 4,5–16 кг, а объем бака от 0,7 до 2,5 л.

ООО Пожоборонпром производит насосы гидравлические РН80 с размерами 740х200х170 мм и давлением 7,5/80 МПа. Насос подает масло от 0,8–2,5 см3 за один ход. Усилие на рукоятке не превышает 300 Н. Организация «Спрут» поставляет в МЧС России насос ручной НРС-12/80 с размерами 610х160х155 мм.

Рукава высокого давления (РДВ) армированные как гибкие трубопроводы предназначены для подачи рабочей жидкости от насосной станции в гидроинструмент. Они имеют условный проход 6 мм, рассчитаны на рабочее давление 80 МПа (разрушающее давление не менее 190 МПа). Длина до 20 м.

Блок управления гидроинструментом включает гидрораспределитель 1, гидрозамки 2 и 4 (рис. 1.17). Переключением гидрораспределителя осуществляется подвод жидкости в поршневую полость цилиндра и отвод из штоковой полости, и наоборот.

Гидрозамки обеспечивают запирание масла в рабочих полостях гидроцилиндра при прекращении ее подачи, а также отвод ее из них.

1

f

2

3

4

m

m

n

n

k

с

b

с

b

d

a

d

a

Рис. 1.17. Блок управления механизмами:1 – гидрораспределитель;2, 4 – гидрозамки; 3 – рабочий цилиндр

l

Принцип работы блока управления рассмотрим на примере подачи жидкости (масла) в поршневую полость гидроцилиндра 1. Для этого ручку f поворачивают так, чтобы совпали индексы a, b, c и d средней и верхней частей. Тогда масло из насосной станции поступит к a – b – k и через обратный клапан гидрозамка 2 в поршневую полость гидроцилиндра 3. Поршень и шток будут перемещаться влево.

Одновременно по каналу k – l масло поступит в гидрозамок 4 и совместит индексы m и n, переместив стрелку вниз. Тогда масло из поршневой полости гидроцилиндра поступит к m – n, а затем c – d и в насосную станцию.

Для перемещения поршня гидроцилиндра в правую часть необходимо рукояткой f перевести среднюю часть гидрораспределителя 1 в нижнее положение.

Гидрозамками оснащается только гидравлический инструмент, предназначенный для силового подъема тяжестей или их разжима.

Аварийно-спасательный инструмент, рекомендованный для комплектования ПА различного назначения, можно разделить на две группы. Первую из них составляют инструменты для резания металлических материалов различного профиля (прутья, уголки, тросы, листовой материал). Ко второй группе относятся различные устройства для раздвигания или подъема элементов разрушенных конструкций, расширения проемов, узких проходов и т.д.

Инструмент для резания металлов охватывает такие устройства, как резаки, ножницы, кусачки.

Принципиальная схема устройства и работы механизмов этого типа инструментов представлена на рис. 1.18. Его называют центрально-осевым, так как разжим и последующее сжатие рычагов (челюстей) 7 происходит при их повороте на шарнире 9, закрепленном на кронштейне 4.

Инструмент на рисунке находится в исходном положении. При подаче масла в штоковую полость цилиндра (показано стрелкой) поршень 2, перемещаясь вправо, сместит шарнир 9 из положения а в положение б, а концы с рычагов 7 займут положение с' и с". Расстояние между ними равно s. Совершится первый цикл работы инструмента. При подаче масла в поршневую полость цилиндра поршень 2 будет перемещаться влево и рычаги (челюсти), сжимаясь, будут разрезать (деформировать) металлическое изделие, заложенное между ними.

1

2

3

4

5

6

7

8

6

9

h

б

а

с

с''

s

с'



Рис. 1.18. Центрально-осевой привод инструмента:

1 – цилиндр; 2 – поршень; 3 – шток; 4 – кронштейн; 5 – тяга; 6 – шарнир; 7 – рычаги (челюсти); 8 – центральный шарнир; 9 – шарнир на штоке 3

Первый цикл работы может быть использован для разжима (перемещения) элементов конструкций. В этом случае инструмент будет комбинированным: перемещение в первом цикле работы, резание – во втором цикле.

Инструмент для перемещения материалов или изделий включает в себя такие изделия, как: разжимы, расширители, домкраты и др.

Приниципиальная схема устройства и работы механизмов этого типа инструментов представлена на рис. 1.19. Инструменты этого типа называют нецентрально-осевыми, так как опоры шарниров 6, вокруг которых поворачиваются челюсти 8, закреплены на двух кронштейнах 4.

1

2

3

4

5

6

7

7

9

9

а

8

а

а

h

s

Инструмент, показанный на рис. 1.19, находится в исходном положении. При подаче масла в поршневую полость цилиндра 1 (см. стрелку на рис. 1.19) шток 3 будет перемещаться влево. При этом шарнир 9 переместится в положение 9', а шарнир 7 в положение 7. Вследствие этого концы а челюстей 8 займут положение а' и а". Величина s будет характеризовать их раскрытие. Этим завершается первый цикл работы инструмента. Второй цикл работы заключается в сжатии челюстей. Для этого масло следует подавать в штоковую полость цилиндра 1.

Рис. 1.19. Нецентрально-осевой привод инструмента:

1 – цилиндр; 2 – поршень; 3 – шток; 4 – кронштейн; 5 – тяга; 6 – шарнир;7 – шарнир на рычаге; 8 – рычаг; 9 – шарнир на штоке

Классификация АСИ и параметры технических характеристик определяют его назначение и область применения. На основании рассмотренных принципиальных схем создан комплект инструмента различного назначения (рис. 1.20).

Основные интервалы параметров технических характеристик АСИ приведены в табл. 1.7.

ТИП ИНСТРУМЕНТА

Ножницы челюстные

Резак тросовый

Кусачки

Расширители

Домкраты

Цилиндры штоковые

Разжим-ножницы

Резак комбинированный

Оцентрированный

Неоцентрированный

Резаки

Комбинированный



Рис. 1.20. Классификация гидравлического инструмента

Таблица 1.7

Наименованиеинструмента Эс-киз Показатели и параметры

Масса, кг Перекусываемый пруток, мм Раскрытие рычагов, мм Усилие пружины, кН Удельная работа, кДж/кг

Ножницы челюстные 6 9-15,5 20-32 45-185 - -

Резак тросовый 7 3,5-15,8 25-70 - - -

Кусачки 3 9,5 до 32 - - -

Разжим-ножницы 4 11-16 25-32 200-360 24-64 0,4-1,6

Резак комбинированный 5 10,8-16 5-10* 115-185 13-40 0,14-0,7

Расширитель 8 15,5-34 - 500-830 43-200 12-50

Домкрат 9 1,5-45 - 35-104 50-2400 97-5,9

Цилиндр** одноштоковый 11 4,5-18,5 - 200-500 58-230/

25-60 1,5-3,6/0,7-2

Цилиндр двухштоковый 12 9,5-2 - 400-800 50-230/

25-130 -/

1,2-2,7

* Указана толщина перерезаемого листа.

** Указаны усилия толкающие и тянущие.

Все инструменты в основном работают при давлении 65–80 МПа. Некоторые из них имеют особенности конструкций. Так, цилиндр двух-штоковый представляет собой два гидравлических цилиндра между поршневыми полостями, в которых смонтирован блок управления, состоящий из гидрозамка и гидрораспределителя.

Оба типа гидроцилиндров снабжаются комплектом приспособлений для стягивания элементов конструкций. В комплект входят: захваты, крюки, цепи.

Домкрат ДМ-90, выпускаемый Пожоборонпромом, двухступенчатый телескопический оборудован специальной тянущей пружиной, обеспечивающей возвращение подвижных его частей в исходное состояние. Аналогичное устройство имеют и кусачки.

Гидроинструмент требует минимального ухода. Необходимо предотвращать попадание в масло влаги и абразива, а также периодически его заменять.

1.6. Особенности размещения ПТВ

Номенклатура (перечень) ПТВ, возимого на АЦ, включает более 50 наименований различных приспособлений и устройств. На других ПА, например автомобилях специального применения, перечень ПТВ значительно меньше.

ПТВ на пожарных автомобилях используется крайне неравномерно. Частота его применения на АЦ изменяется в очень широких пределах. Так, пожарные насосы включаются в работу на всех пожарах. Рукава всасывающие, в зависимости от их диаметра и развития водопроводной сети в городах, используются на 4–10 % всех пожаров. Пожарные напорные рукава диаметром 51 мм применяют на 80 % пожаров, а диаметром 77 мм – только на 20 % пожаров; а гидроэлеватор, например, – только на 1,1 % всех случаев тушения пожаров.

Различные образцы ПТВ различаются по массе, размерам и занимаемым ими объемам. Так, масса комплекта пожарных рукавов наАЦ-40(131)137 составляет 270 кг, а объем, занимаемый ими, равен 35–40 % объема отсеков. Масса колонки пожарной равна 18 кг, а габаритные размеры находятся в пределах 430х190х1090 мм, пеносмесители различноготипа имеют массу 4,6–6 кг при длине 420–520 мм, стволы различного назначения при длине до 450 мм имеют массу до 2 кг и т.д. Общая массавозимого и снимаемого с ПА пожарно-технического вооружения находится в пределах 500–700 кг.

Например, на АЦ-40(131)153 в правых отсеках масса ПТВ была равна 250 кг, в левых – 200 кг и на крыше – 300 кг. Такое же распределение по массе реализовано на АЦ, установленной на шасси Урал-5556.

Размещение ПТВ должно удовлетворять ряду требований: способствовать уменьшению времени боевого развертывания ПА, не снижать его оперативной подвижности, его крепление и размещение должны быть травмобезопасными.

Для реализации изложенных требований размещение ПТВ в отсеках ПА должно подчиняться принципу эргономики, согласно которому«…оборудование, органы управления и приборы должны располагаться в соответствии с логикой деятельности человека».

При размещении ПТВ в отсеках АЦ следует учитывать возможности:

группировки элементов ПТВ по их функциональному назначению;

применения (на сколько оно важно для выполнения определенной группы операций);

оптимального размещения по конфигурации ПТВ, его массе, геометрическим размерам;

последовательного использования, согласно которому оно применяется при организации работы;

частоты использования (в соответствии с этим элементы, наиболее часто используемые, должны находиться в самых удобных местах);

рациональной доступности оборудования для пожарных различного роста.

Эти принципы (или возможности) трудно согласовать между собой. Поэтому при разработке схемы размещения ПТВ на АЦ должен быть разумный компромисс.

Для обеспечения оптимальной оперативной подвижности и безопасного движения ПА необходимо массу пожарной надстройки (25 % от общей массы ПА), включающей и ПТВ, размещать так, чтобы выполнялись два условия. Прежде всего, необходимо, чтобы нагрузка на управляемую ось составляла не менее 25 % от полной массы ПА. Кроме того, нагрузки на колеса правого и левого бортов должны быть равными с отклонением ±1 %.

Учитывая влияние ПТВ на технические возможности ПА, запрещается самовольное, необоснованное переукомплектование ПТВ пожарных автомобилей и изменение его размещения в них.

Глава 2

ПОЖАРНЫЕ НАСОСЫ

Из всего многообразия пожарно-технического вооружения насосы представляют наиболее важный и сложный их вид. В пожарных автомобилях различного назначения используется разнообразная номенклатура насосов, работающих по различным принципам. Насосы, прежде всего, обеспечивают подачу воды на тушение пожаров, работу таких сложных механизмов, как автолестницы и коленчатые подъемники. Насосы применяются во многих вспомогательных системах, таких, как вакуумные системы,гидроэлеваторы и др. Широкое применение насосов обусловлено не толькоих устройством, но и рабочими характеристиками, особенностями режимов их работы, это обеспечивает эффективное применение их для тушения пожаров.

2.1. Основные определения и классификация насосов

Первое упоминание о насосах относится к III – IV вв. до нашей эры. В это время грек Ктесибий предложил поршневой насос. Однако точно не известно использовался ли он для тушения пожаров.

Изготовление поршневых пожарных насосов с ручным приводом осуществлялось в XVIII в. Пожарные насосы с приводом от паровых машин производились в России уже в 1893 г.

Идея использовать центробежные силы для перекачки воды была высказана Леонардо да Винчи (1452 – 1519 гг.), теория же центробежного насоса была обоснована членом Российской Академии наук Леонардом Эйлером (1707 – 1783 гг.).

Создание центробежных насосов интенсивно развивалось во второй половине XIX в. В России разработкой центробежных насосов и вентиляторов занимался инженер А.А. Саблуков (1703 – 1857 гг.) и уже в 1840 г. им был разработан центробежный насос. В 1882 г. был произведен образец центробежного насоса для Всероссийской промышленной выставки. Он подавал 406 ведер воды в минуту.

В создание отечественных гидравлических машин, в том численасосов, большой вклад внесли советские ученые И.И. Куколевский,С.С. Руднев, А.М. Караваев и др.

Пожарные центробежные насосы отечественного производства устанавливались на первых пожарных автомобилях (ПМЗ-1, ПМГ-1 и др.) уже в 30-х гг. прошлого столетия.

Исследования в области пожарных насосов на протяжении многих лет проводились во ВНИИПО и ВИПТШ.

В настоящее время на пожарных машинах применяются насосы различных типов (рис. 2.1). Они обеспечивают подачу огнетушащих веществ, функционирование вакуумных систем, работу гидравлических систем управления.

НАСОСЫ

ПОДАЧА ОВ

ВАКУУМНЫЕ СИСТЕМЫ

ГИДРАВЛИЧЕСКИЕ СИСТЕМЫ

Центробежные

Струйные

Шестеренные

Струйные

Шиберные

Поршневые

Водокольцевые

Шестеренные

Аксиально-поршневые



Рис. 2.1. Область применения насосов

Работа всех насосов с механическим приводом характеризуется двумя процессами: всасывания и нагнетания перекачиваемой жидкости. При этом насос любого типа характеризуется величиной подачи жидкости, развиваемой напором, высотой всасывания и величиной коэффициента полезного действия.

Подачей насоса называется объем жидкости, перекачиваемой в единицу времени, Q, л/с. Напором насоса называется разность удельных энергий жидкости после и до насоса. Его величину измеряют в метрах водяного столба, Н, м. Для выяснения сущности определения напора рассмотрим схему работы насосной установки (рис. 2.2). На основании уравнения Бернулли запишем

е2 - е1 = (z2 – z1) + , (2.1)

где е2 и е1 – энергия на входе и выходе из насоса; Р2 и Р1 – давление жидкости в напорной и всасывающей полости, Па; ρ – плотность жидкости, кг/м3; v2 и v1 – скорость жидкости на выходе и входе в насос, м/с; g – ускорение свободного падения, м/с. Разность z2 и z1, а также невелики, поэтому для практических расчетов ими пренебрегают.

Значения и выразим через показания манометра Нман и вакуумметра Нвак на насосе, измеренные в м вод. ст.

и . (2.2)

На основании изложенного напор Н насоса приближенно оценивают как сумму показаний манометра и вакуумметра:

Н = Нман + Нвак. (2.3)

Рис. 2.2. Схема насосной установки:

1 – насос; 2 – всасывающий патрубок; 3 – коллектор; 4 – напорная задвижка; 5 – рукавная линия; 6 – ствол

6

5

4

3

1

2

Нств

hвс

Нг

Н0



z1

z2

В этой формуле знак «плюс» ставят, если во всасывающей полости вакуум, т.е. при работе с открытого водоисточника. В случае забора воды из водопроводной сети или при работе последовательно включенных насосов ставят знак «минус».

В соответствии с рис. 2.2 напор, развиваемый насосом Н, должен обеспечить подъем воды на высоту Нг, преодолеть сопротивления во всасывающей hвс и напорной линии hн и обеспечить требуемый напор на стволе Нств. Тогда можно записать

Н = Нг + hвс + hн + Нств. (2.4)

Потери во всасывающей и напорной линиях определяют по формуле

hвс = Sвс Q2 и hн = Sн Q2, (2.5)

где Sвс и Sн – коэффициенты сопротивления линий всасывания и нагнетания.

На практике используют понятие «напор на насосе» – это манометрический напор. Он равен

Нман = Нпод + hн + Нств. (2.6)

Эффективная мощность, Вт, насоса расходуется на совершение работы по перемещению определенного объема жидкости с плотностью ρ на высоту Н, м:

Ne = ρgQH. (2.7)

Мощность, потребляемая насосом, равна

. (2.8)

Полный КПД η насоса определяют по формуле

η = ηо ηг ηм, (2.9)

где ηо , ηг и ηм – КПД объемный, гидравлический и механический.

Центробежные насосы обладают рядом достоинств. При постоянной скорости вала насоса nном, об/мин, изменяя подачу Q, л/с, в широких пределах (до 10 раз), напор Н, м, развиваемый им, изменяется на 10–15 %. Следовательно, напор при изменении подачи всегда будет достаточно высоким. Центробежные насосы подают жидкость равномерно без пульсаций. Важным является и то, что они способны работать «на себя». При перекрытии ствола, засорении его или заломе напорных рукавов насос не выключается.

Центробежные насосы не требуют сложного привода от двигателя, надежны в работе и просты в управлении. Существенным их недостатком является то, что они не могут забирать воду из открытых водоисточников. Поэтому их оборудуют специальными вакуумными системами с ручным или автоматическим включением.

К центробежным насосам для целей пожаротушения предъявляется ряд специфических требований. Они должны обеспечивать подачу воды и водных растворов пенообразователя с водородным показателем рН от 7 до 10 плотностью 1010 кг/м3 и массовой концентрацией твердых частиц до0,5 % при их максимальном размере 3 мм. Насос может потреблять не более 70 % мощности, развиваемой двигателем, расположенным на шасси, и обеспечивать работу непрерывно в течение 6 ч при любых температурах окружающей среды.

Струйные и объемные насосы, применяемые на пожарных автомобилях, должны обеспечивать надежную и эффективную работу основных агрегатов во всем диапазоне условий эксплуатации. Они должны быть просты в управлении и обслуживании.

2.2. Объемные насосы

Объемные насосы – насосы, в которых перемещение жидкости (или газа) осуществляется в результате периодического изменения объема рабочей камеры. К ним относятся: поршневые насосы, пластинчатые, шестеренчатые, водокольцевые.

Поршневые насосы (рис. 2.3). В поршневых насосах рабочий орган (поршень) совершает в цилиндре возвратно-поступательное движение, сообщая перекачиваемой жидкости энергию.

Подача Q, м3/с, насоса определяется по формуле

Q = (2.10)

где d – диаметр поршня, м; S – ход поршня, м; n – частота перемещения поршня, с-1.

Рис. 2.3. Поршневой насос:1 – клапан; 2 – поршень; 3 – цилиндр

1

2

3

S

d

Поршневые насосы обладают рядом достоинств. Они могут перекачивать различные жидкости, создавая большие напоры (до 15 МПа), обладают хорошей всасывающей способностью (до 7 м) и высоким КПД η = 0,75–0,85.

Их недостатками являются: тихоходность, неравномерность подачи жидкости и невозможность ее регулировать.

Поршневые насосы применяют для заполнения огнетушителей, газовых баллонов, их испытаний и т.д.

Аксиально-поршневые насосы (рис. 2.4). Несколько поршневых насосов 2 размещены в одном барабане 3, вращающемся на оси распределительного диска 1. Штоки поршней 4 шарнирно закреплены на диске, вращающемся на оси 5. При вращении вала 6 поршни перемещаются в осевом направлении и одновременно вращаются с барабаном.

Рис. 2.4. Аксиально-поршневой насос:

1 – распределительный диск; 2 – поршень; 3 – барабан; 4 – шток; 5 – ось; 6 – вал;7 – распределительный диск

1

2

3

4

5

6

7

a

b

a

b



Эти насосы применяются в гидравлических системах и перекачивают масла.

В распределительном диске 7 выполнены два серповидных окна. Одно из них соединено с масляным баком, а второе с магистралью, в которую подается масло.

За один оборот вала барабана каждый поршень совершает ходвперед и назад (всасывание и нагнетание).

Подача насоса определяетсяпо формуле

(2.11)

где Dб – диаметр барабана, м; d – диаметр поршня, м; i – число поршней;n – скорость вращения вала, об/мин.

Достоинством насосов является равномерность подачи жидкости, высокое развиваемое давление (40–50 МПа) и КПД (η) = 0,85–0,9.

В системах управления автолестниц и подъемников насосы используются и как гидромоторы и как гидронасосы.

Поршневые насосы двойного действия. Насосы этого типа применяются в качестве вакуумных насосов на ряде пожарных насосов, выпускаемых иностранными фирмами. Принципиальная схема такого насоса представлена на рис. 2.5. Поршни насоса 5 объединены болтовым соединением 3 в единое целое. Они перемещаются смонтированным на оси 2 эксцент-риком 1 посредством ползуна 4.

Рис. 2.5. Поршневой насос двойного действия:

1 – эксцентрик; 2 – ось; 3 – стержень, соединяющий поршни; 4 – ползун; 5 – поршень;6 – выпускной патрубок; 7 – большая мембрана; 8 – малая мембрана; 9 – всасывающий патрубок; 10 – корпус; 11 – крышка

9

10

11

8

7

6

5

4

3

2

1

Частота вращения валика эксцентрика одинакова с частотой вращения вала насоса. Вал эксцентрика приводится во вра-щение клиновым ремнем от ко-робки отбора мощности. Привращении эксцентрика 1 ползу-ны 4 воздействуют на поршни5. Они совершают возвратно-поступательное движение. Вположении, указанном на ри-сунке, левый поршень будетсжимать воздух, ранее посту-пивший в камеру. Сжатый воз-дух преодолеет сопротивлениеманжеты 7 и будет удалятьсячерез патрубок 6 в атмосферу.Синхронно с этим в правой камере будет создаваться разрежение. При этом будет преодолено сопротивление первой малой манжеты 8. В пожарном насосе будет создаваться вакуум, он постепенно заполняется водой. При поступлении воды в вакуумный насос он отключается.

За каждую половину оборота эксцентрика поршни совершают ход, равный 2е. Тогда подача насоса, м3/мин, может быть вычислена по формуле

(2.12)

где d – диаметр цилиндра, м; е – эксцентриситет, м; n – частота вращения валика, об/мин.

При частоте вращения, равной 4200 об/мин, насос обеспечивает заполнение пожарного насоса с глубины всасывания 7,5 м за время меньше 20 с.

Рис. 2.6. Шестеренчатый насос:

1 – зубчатое колесо;2 – корпус; 3 – впадина

1

2

3

3

Шестеренчатый насос (рис. 2.6) состоит их корпуса 2 и зубчатых колес 1. Одно из них приводится в движение, второе в зацеплении с первым свободно вращается на оси. При вращении шестерен жидкость перемещается впадинами 3 зубьев по окружности корпуса.

Они характеризуются постоянной подачей жидкости и работают в диапазоне 500–2500 об/мин. Их КПД в зависимости от частоты вращения и давления составляет0,65–0,85. Они обеспечивают глубину всасывания до 8 м и могут развивать напор более 10 МПа. Используемый в пожарной технике насос НШН-600 обеспечивает подачу Q = 600 л/мин и развивает напор Н до 80 м при n = 1500 об/мин.

Подача насоса определяется по формуле

(2.13)

где R и r – радиусы шестерен по высоте и впадинам зубьев, см; b – ширина шестерен, см; n – частота вращения вала, об/мин; η – КПД.

В этих насосах предусматривается перепускной клапан. При избыточном давлении через него перетекает жидкость из полости нагнетания во всасывающую полость.

Пластинчатый насос (шиберный) насос (рис. 2.7) состоит из корпуса с запрессованной с него гильзой 1. В роторе 2 размещены стальные пластины 3. Приводной шкив закреплен на роторе 2.

Ротор 2 размещен в гильзе 1 эксцентрично. При его вращении лопатки 3 под действием центробежной силы прижимаются к внутренней поверхности гильзы, образуя замкнутые полости. Всасывание происходит за счет изменения объема каждой полости при ее перемещении от всасывающего отверстия к выпускному.

Подача, см3/мин, пластинчатых насосов равна

, (2.14)

где n – частота вращения ротора, об/мин; r2c и r2p – радиусы статора и ротора, см; b – ширина пластины.

Рис. 2.7. Пластинчатый насос:

1 – гильза; 2 – ротор; 3 – пластина

1

2

3

Пластинчатые насосы могут созда-вать напоры 16–18 МПа, обеспечиваютзабор воды с глубины до 8,5 м при КПД,равном 0,8–0,85.

Смазка вакуумного насоса осуществляется маслом, которое подается в его всасывающую полость из масляного бака вследствие разрежения, создаваемого самим насосом.

Рис. 2.8. Водокольцевой насос:

1 – ротор; 2 – рабочее пространство; 3 – канал всасывания;

4 – корпус; 5 – отверстие канала нагнетания

1

2

3

4

5

Водокольцевой насос может использоваться как вакуумный насос. Принцип его работы легко уяснить из рис. 2.8. При вращении ротора 1 с лопатками жидкость под влиянием центробежной силы прижимается к внутренней стенке корпуса насоса 4. При повороте ротора от 0 до 180о рабочее пространство 2 будет увеличиваться, а затем уменьшаться. При увеличении рабочего объема образуется вакуум и через отверстие канала всасывания 3 будет всасываться воздух. При уменьшении объема он будет выталкиваться через отверстие канала нагнетания 5 в атмосферу.

Водокольцевым насосом может создаваться вакуум до 9 м вод.ст. Этот насос имеет очень низкий КПД, равный 0,2-0,27. Перед началом работы в него необходимо заливать воду – это его существенный недостаток.

2.3. Струйные насосы

Струйные насосы широко используются в пожарной технике.

Водоструйный насос – гидроэлеватор пожарный входит в комплект ПТВ каждого пожарного автомобиля. Он используется для забора воды из водоисточников с уровнем воды, превышающим геодезическую высоту всасывания пожарных насосов. С его помощью можно забирать воду из открытых водоисточников с заболоченными берегами, к которым затруднен подъезд пожарных машин. Он может быть использован как эжектор для удаления из помещений воды, пролитой при тушении пожаров.

Пожарный гидроэлеватор (рис. 2.9) представляет собой устройство эжекторного типа. Вода (рабочая жидкость) от пожарного насоса поступает по рукаву, подсоединенному к головке 7, в колено 1 и далее в сопло 4. При этом потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию. В камере смешения происходит обмен количества движения между частицами рабочей и всасываемой жидкости: при поступлении смешанной жидкости в диффузор 5 осуществляется переход кинетической энергии смешанной и транспортируемой жидкости в потенциальную. Благодаря этому в камере смешения создается разрежение. Этим обеспечивается всасывание подаваемой жидкости. Затем в диффузоре давление смеси рабочей и транспортируемой жидкостей значительно повышается в результате снижения скорости движения. Это позволяет осуществлять нагнетание воды.

Рис.2.9. Гидроэлеватор пожарный Г-600А:

1 – колено; 2 – камера; 3 – решетка;4 – сопло; 5 – диффузор; 6 – головка соединительная ГМ-80; 7 – головкасоединительная ГМ-70

1

2

3

4

5

6

7

Рис. 2.10. Зависимость производительности гидроэлеватора от высоты всасывания и давления на насосе:

1 – высоты всасывания; 2 – дальность всасывания воды при высоте всасывания 1,5 м

1

2

h, м

S, м

H, МПа



Количество воды, эжектируемое гидроэлеватором, зависит от высоты всасывания и давления на насосе (рис. 2.10).

Струйные насосы просты по устройству, надежны и долговечны в эксплуатации. Существенным их недостатком является низкий коэффициент полезного действия, его величина не превышает 30 %.

Газоструйный эжекторный насос используется в газоструйных вакуумных аппаратах (рис. 2.11). С их помощью обеспечивается заполнение всасывающих рукавов и центробежных насосов водой.

Рис. 2.11. Газовый струйный эжектор:

1 – сопло высокого давления; 2 – корпус насоса;3– камера разрежения; 4 – камера смешения;5 – диффузор

1

2

3

4

5





Qр+э

Рабочим телом этого насоса являются отработавшие газы двигателя внутреннего сгорания АЦ. Они поступают в сопло высокого давления, затем в камеру 3 корпуса насоса 2, в камеру смешения 4 и диффузор 5. Как и в жидкостном эжекторе, в камере 3 создается разрежение. Эжектируемый из пожарного насоса воздух обеспечивает создание в нем вакуума и, следовательно, заполнение всасывающих рукавов и пожарного насоса водой.

Газовые струйные насосы на АЦ используются также для проверки создаваемого вакуума в пожарных насосах.

Газовые струйные насосы обеспечивают заполнение систем всасывания и центробежных насосов при заборе воды с глубины 7 м в течение 30–60 с.

Рис. 2.12. Струйный аппарат для вакуумных систем ПН с приводом от дизеля:

1 – экран; 2 – сопло; 3 – трубка от вакуумногокрана насоса; 4 – сопло большое; 5 – корпус;6 – горловина диффузора; 7 – диффузор

1

2

3

4

5

6

7

а

б

в

г

Забор воды из открытых водоисточников производится до 10 % всех пожаров. При этом наиболее часто из открытых водоисточников производят забор воды при геометрических высотах всасывания до 5 м. Высота всасывания 6 и 7 м встречается крайне редко и составляет около 1 % от общего числа случаев.

Струйный насос вакуумной системы автоцистерн с ди-зельными двигателями имеютодну особенность. Для уменьшения сопротивления в системе используется двухступенчатый струйный насос с постоянным подсосом воздуха.

В насосе (рис. 2.12)имеются два сопла: малое 2 ибольшое 4. В камеру междуними подводится трубка в, со-единяющая струйный и центробежный насосы. При поступлении отработавших газов дизеля по стрелке а большое сопло создает разрежение в камере в и происходит поступление в нее воздуха из насоса по трубке 3 и дополнительное всасывание его из атмосферы (стрелка б). Этот подсос способствует стабилизации работы струйного насоса. Такие струйные насосы используются на АЦ с шасси «Урал» и двигателями ЯМЗ-236(238).

2.4. Пожарные центробежные насосы серии ПН

Насосы этой серии устанавливают на автоцистернах и автонасосах. Они обозначаются так: ПН-40УВ. В этом обозначении ПН – пожарный насос; 40 – максимальная подача насоса 40 л/с; У – универсальный и В – особенности выпускаемой серии. Геометрически подобны этой серии пожарные насосы ПН-60 и ПН-110. Они применяются на пожарных аэродромных автомобилях и пожарных насосных станциях, соответственно. Все эти насосы имеют одинаковую номенклатуру основных деталей, идентичны по конструкции, но имеют различные габариты и массу.

Рис. 2.13. Пожарный насос ПН-40УВ:

1 – насос; 2 – напорный патрубок; 3 – напорнаязадвижка; 4 – пеносмеситель; 5 – коллектор;6 – задвижка коллектора; 7 – отвод насоса

1

2

3

4

5

6

7

Пожарный центробежный насос ПН-40УВ (рис. 2.13) состоит из корпуса насоса 1, двух напорных патрубков 2, двух напорных задвижек 3, пеносмесителя 4 и задвижки коллектора 6, установленных на коллекторе 5. Продольный разрез представлен на рис. 2.14. В корпусе 1, закрытом крышкой 2, на подшипниках 8 и 16 установлен вал 9 насоса. В корпусе на конической части вала размещено рабочее колесо 5. Оно сопряжено с валом шпонкой и закреплено гайкой со шплинтом. На насосах ПН-40У и ПН-40УА рабочее колесо размещено на цилиндрическом шипе вала. В осевом направлении оно закреплено гайкой и стопорится стопорной шайбой. От проворачивания оно крепится одной и двумя шпонками, соответственно, на ПН-40У и ПН-40УА. В ПН-40У корпус насоса 1 и масляная ванна 10 выполнены в виде одной детали. Все корпусные детали насосов, рабочие колеса изготовлены из алюминиевого сплава АЛ9В. Валы насосов изготовлены из стали 45Х и термически обработаны.

Рис. 2.14. Продольный разрез насоса ПН-40УВ:

1 – корпус; 2 – крышка; 3 и 4 – уплотнительные кольца; 5 – рабочее колесо;6 – сливной краник; 7 – уплотнительный стакан с манжетами; 8 – подшипник;9 – вал насоса; 10 – масляная ванна; 11 – червячная шестерня привода тахометра;12 – муфта-фланец; 13 – предохранительный клапан; 14 – манжета; 15 – корпуспривода тахометра; 16 – подшипник; 17 – шланг

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A

Б

Б

A



Рис. 2.15. Эпюра осевых сил на колесе

F



a

b

R1

R2

Важным элементом в насосе является крепление вала. Это обусловлено особенностями конструкции рабочего колеса. Оно выполнено из двух дисков – ведущего и покрывающего. Между ними расположены лопасти, загнутые в сторону, противоположную вращению. Размеры дисков колеса различны (рис. 2.15, а). Это обусловливает возникновение осевой силы, которая направлена по оси в сторону всасывающего патрубка и стремится сместить колесо по оси (рис. 2.15, б). Величину этой силы приближенно вычисляют по формуле

(2.15)

где S – коэффициент сопротивления щелевого уплотнения (S = 0,6); Р – давление на насосе, Па; R1 – радиус входного отверстия, м; Rв – радиус вала, м.

Рис.2.16. Крепление подшипника:

1 – корпус привода тахометра;2 – прокладка; 3 – полукольцоверхнее; 4 – корпус насоса;5 – вал насоса; 6 – подшипник;7 – втулка

1

2

3

4

0

5

6

7

0

Для уменьшения этого давления в ведущем диске колеса предусмотрены отверстия. Через эти отверстия жидкость перетекает из левой части в правую. Кроме того, подшипник 16 (50309) имеет стопорное кольцо, воспринимающее осевое усилие и предотвращающее смещение вала в осевом направлении (рис. 2.16).

Работоспособность центробежных насосов во многом определяется совершенством его герметизации.

Внутренняя герметизация рабочего колеса 5 (см. рис. 2.14) от корпуса 1 и крышки 2 осуществляется уплотнительными кольцами 3 в корпусе 4, в крышке (они изготовлены из чугуна) и на колесе 5 (они изготовлены из бронзы Бр 0ЦС-6-6-3). Радиальный зазор между кольцами находится в пределах 0,2–0,3 мм. Эти щелевые уплотнения уменьшают циркуляцию жидкости в насосе. При изнашивании колец она увеличивается.

Рис. 2.17. Уплотнительный стакан:

а: 1 – вал насоса; 2 – манжета; 3 – стальнойкорпус; 4 – пружина;

б: 1 – манжета; 2 – кольцо; 3 – кольцо; 4 – упорное кольцо; 5 – стопорное кольцо; 6 – резиновые кольца

1

2

3

4

а

б

1

2

3

4

5

6

Герметизация внутренней полости насоса от внешней средыосуществлена двумя способами. Все стенки соединяемых корпусных дета-лей герметизируют резиновыми прокладками.

Герметизация насоса по валу производится резиновыми манжетами (рис. 2.17), размещаемыми в специальном уплотнительном стакане 7 (см. рис. 2.14).

В уплотнительномстакане ПН-40УВ смонтиро-ваны три манжеты АСК-45. Одна из них (на рис. 2.17, б – правая) обеспечивает герметизацию при разрежении в насосе. Две другие – при давлении. Для обеспечения долговечности уплотнения в него по шлангу 17 (см. рис. 2.14) периодически подается смазка. На пожарных насосах других конструкций в стакане монтируют четыре манжеты.

Изнашивание манжет и вала ухудшает герметизацию насоса. При этом затрудняется забор воды и увеличиваются ее утечки.

Полость в корпусе насоса (см. рис. 2.14) между уплотнительным стаканом 7 и манжетой 14 образует масляную ванну 10. В ней имеется щуп и сливная пробка. В корпусе привода тахометра 15 размещены червячная шестерня привода 11 и червяк, изготовленные из стали 20. Масляная ванна и корпус привода тахометра изолированы от внешней среды манжетой 14 и защитным колпаком.

Для смазки подшипников качения и привода тахометра в масляную ванну заливается трансмиссионное масло ТАп-15В через отверстие для щупа. Слив его производится через сливную пробку.

Рис. 2.18. Коллектор насоса:

1 – корпус; 2 – седло клапана; 3 – клапан в сборе; 4 – прокладка; 5 – полукольца;6 – втулка; 7 – шпиндель; 8 – корпусзадвижки; 9 – колпачок; 10 – маховичок

1

2

3

4

5

6

7

8

9

10

Коллектор (поз. 5 на рис. 2.13) предназначен для распределения воды в рукавные линии или цистерну. Кроме того, на нем крепится напорная задвижка 6, пеносмеситель 4 и вакуумный кран для соединения внутренней полости насоса с атмосферой или вакуумным насосом.

Поперечный разрез коллектора с напорной задвижкой показан на рис. 2.18. Корпус 1 коллектора фланцем с отверстием диаметром 90 мм крепится к диффузору пожарного насоса.

Рис. 2.19. Напорная задвижка ПН-40УВ:

1 – клапан; 2 – ось клапана;3 – корпус; 4 – втулка; 5 – винт;6 – уплотнение; 7 – гайка;8 – маховик

1

2

3

4

5

6

7

8

В лафетный ствол или цистерну вода подается через отверстие диаметром 78 мм. Проходное сечение этого отверстия регулируется задвижкой. Она состоит из корпуса 1, клапана 3 в сборе и прокладки 4. Шпиндель 7 закреплен на клапане полукольцами 5, позволяющими ему вращаться относительно клапана. Шпиндель имеет винтовую нарезку и при вращении маховичка 10 перемещается по резьбе втулки 6. При соприкосновении прокладки 4 с седлом клапана 2 вращение штока не тормозится благодаря полукольцам 5. Этим предотвращается разрушение прокладки 4.

К фланцам торцовых поверхностей коллектора (отверстия с диаметром 70 мм) шпильками крепятся две напорные задвижки (рис. 2.19). Их устройство не требует особых объяснений. При вращении маховичка 8 шпиндель с винтовой нарезкой 5 перемещается во втулке 4. Под напором воды клапан 1 поворачивается вокруг оси 2 и вода поступает в рукавную линию. При прекращении подачи воды на высоту клапан 1 под ее напором закроет вход в коллектор.

Рис. 2.20. Пеносмеситель ПС-5:

1 – корпус; 2 – дозирующий кран; 3 – диск; 4 – маховичок;5 – стрелка; 6 – отверстие вштуцере подвода; 7 – рукоятка;8 – кран включения; 9 – сопло;10 – диффузор

7

8

9

10

5

4

3

2

1

6

2

1

Пеносмеситель. На насосах ПН-40УВ установлены пеносмесители ПС-5 (рис. 2.20). Регулируя маховичком 4 положение дозатора 2, возможно подавать 5 различных доз пенообразователя (ПО). При включении рукояткой 7 крана 8 вода из коллектора поступит в сопло 9, а затем в диффузор 10 и во всасывающий патрубок насоса.

Образующееся в камере ПС разрежение обеспечит поступление ПО из пенобака через отверстие 6.

Положение дозатора 2 фиксируется стрелкой 5 на диске 3. Обратный клапан установлен в патрубке с отверстием 6.

Коллекторы и их оснащение на всех насосах типа ПН идентичны.

Пожарный насос ПН-60 является геометрически подобной моделью насоса ПН-40У. Основные детали и колесо насоса отлиты из чугуна (СЧ-24-44).

Рабочее колесо (диаметр 360 мм) насажено на вал диаметром 38 мм по месту посадки. Крепится оно двумя шпонками и закрепляется шайбой и гайкой.

Уплотнение вала насоса осуществляется манжетами АСК-50 (50 – диаметр вала, мм).

Для работы от открытого водоисточника на всасывающий патрубок насоса навинчивается водосборник с двумя патрубками для всасывающих рукавов диаметром 125 мм.

Пожарный насос ПН-110. Этот насос также геометрически подобен насосу ПН-40У. Его основные корпусные детали и рабочее колесо изготовлены из серого чугуна. Диаметр рабочего колеса 630 мм, диаметр вала в месте установки сальников 80 мм (манжеты АСК-80). Диаметр всасывающего патрубка 200 мм, напорных патрубков – 100 мм.

Напорные задвижки насоса ПН-110 имеют конструктивные особенности (рис. 2.21). В корпусе 6 и крышке 7 размещен клапан 1 на оси 3 и шпиндель 5, соединенный рычагом 2 с гайкой 4. При вращении маховичка 10 гайка 4 будет навинчиваться на шпиндель 5 и поворачивать рычагом 2 клапан 1. На клапане имеется резиновая прокладка.

Рис. 2.21. Напорнаязадвижка ПН-110:

1 – клапан; 2 – рычаг;3 – ось заслонки; 4 – гайка; 5 – шпиндель; 6 – корпус; 7 – крышка; 8 – гайка;9 – уплотнение;10 – маховичок

1

2

3

4

5

6

7

8

9

10

Технические возможности и диапазон регулирования основных параметров насоса(Q, л/с, и H, м) оценивают по техническим и рабочим характеристикам.

Технические характеристики насосов ПН приводятся в табл. 2.1.

Значения Н, м, и Q, л/с, получены при nном, указанном в таблице, и высоте всасывания 3,5 м. Подача насоса с максимальной геометрической высоты всасывания должна быть не менее 50 % от номинальной, а напор – не менее 95 % от номинального.

Рабочие характеристики насосов ПН представлены на рис. 2.22 и 2.23. Характеристика Q-H называется главной рабочей характеристикой насоса.

При закрытой задвижке на напорном патрубке (Q = 0) напор, создаваемый насосом, равен 100–120 м. При этом насосом потребляется значительная мощность (см. рис. 2.23). Она затрачивается на механические потери в подшипниках, сальниках и нагревание воды в корпусе насоса. Перегрев воды внутри насоса может вызвать термические деформации в насосе, перегрев подшипников и срыв его работы. Поэтому с закрытой задвижкой возможна только кратковременная работа.

Таблица 2.1

Наименование показателей Размерность ПН-40УВ ПН-60 ПН-110

Напор м 100 100 100

Подача л/с 40 60 110

Частота вращения об/мин 2700 2500 1350

Диаметр рабочего колеса мм 320 360 630

КПД - 0,61 0,6 0,6

Потребляемая мощность кВт 65 98 150

Максимальная высота всасывания м 7,5

Масса кг 65 180 620

3

2

1

Рис. 2.22. Рабочие характеристики насосов:

1 – ПН-40УВ; 2 – ПН-60; 3 – ПН-110

100

50

50

100 Q, л/с

100

50

Н, м

0

Рис. 2.23. Мощность, потребляемая насосом:

1 – ПН-40УВ; 2 – ПН-60; 3 – ПН-110

160

100

50

100 Q, л/с

N, кВт

3

2

1



2.5. Пожарные центробежные насосы (ПЦН)

Пожарные насосы этого типа – насосы нового поколения. Основные конструктивные элементы и системы, обеспечивающие их функционирование, аналогичны элементам и системам насосов ПН. Однако в конструкции насосов ПЦН имеется ряд принципиальных особенностей, отличающих их от насосов ПН.

В этих насосах герметизация внутренних полостей осуществляется уплотнениями торцового типа. Элементы этих уплотнений изготовлены из силицированного графита. Этот материал характеризуется высокой износостойкостью и, следовательно, обеспечивает долговечность уплотнений.

Уплотнения рабочих колес пожарных насосов могут быть и комбинированными. Так, по желанию заказчика изготавливаются насосы, в которых уплотнения рабочих колес и межступенчатые уплотнения выполняются щелевыми, а концевые уплотнения вала – торцовыми.

Существенным является также и то, что струйные насосы в вакуумных системах заменены пластинчатыми насосами с механическим приводом.

Важным является то, что в конструкции насосов реализованы автоматические системы управления забором воды из естественных водоисточников. Ручной привод является дублирующим.

Внесены изменения и в систему подачи пенообразователя. Так, предусматривается автоматическое выключение подачи пенообразователя при выключении пенных стволов или ГПС. На некоторых ПЦН предусмотрен автоматический контроль и поддержание концентрации пенообразователя в воде.

На насосах предусмотрена установка счетчиков продолжительности их работы.

Пожарный центробежный насос низкого давления – ПЦНН-40/100. Продольный разрез насоса представлен на рис. 2.24. Вал 4 насоса установлен в корпусе 5 на двух подшипниках 13. Левый подшипник в осевом направлении закреплен шайбой 15, привинченной к корпусу привода тахометра. Червячное колесо 3 этого привода в осевом направлении закреплено втулкой шкива 1. Шкив закреплен на валу гайкой. На металлической основе шкива завулканизирована резиновая оболочка. Этот шкив является приводом вакуумного насоса.

Рис. 2.24. Поперечный разрез ПЦНН-40/100:

1 – шкив; 2 – манжета; 3 – червячное колесо привода тахометра;4 – вал; 5 – корпус; 6 – крышка; 7 – сетка; 8, 11, 12 – уплотнение торцовое;9 – сливной кран; 10 – колесо; 13 – подшипник;

14 – сливная пробка; 15 – шайба

1

2

3

4

5

2

13

15

14

13

12

11

10

9

6

7

8



а



Подшипники вала смазываются маслом из масляной ванны. Масло заливается через отверстие, закрываемое пробкой а с щупом. Сливается масло через отверстие, закрываемое пробкой 14. Вытекание масла предотвращается резиновыми маслостойкими манжетами 2.

На коническом хвостовике вала 4 на шпонке закреплено рабочее колесо 10 насоса. Уплотнение колеса от корпуса обеспечивается уплотнениями 8 и 11 торцового типа, а уплотнение внутренней полости насоса от внешней среды обеспечивается торцовым уплотнением 12. Слив воды из полости А насоса и корпуса насоса производится через сливной кран 9 шарового типа.

Корпус насоса закрывается крышкой 6 с установленной на нем сеткой 7 с размерами ячеек 3 мм.

Размещение элементов конструкции насоса, арматуры и приборов представлено на рис. 2.25, а, б. На коллекторе 15, установленном на насосе 1, размещены четыре напорных вентиля 5 и вентиль 7 заполнения цистерны. Производятся насосы и с двумя напорными патрубками.

Рис. 2.25. Общий вид ПЦНН-40/100:

а: 1 – насос центробежный; 2 – кран сливной; 3 – кран вакуумный; 4 – маслоуказатель; 5 – вентиль напорный; 6 – пеносмеситель;7 – вентиль заполнения; 8 – манометр; 9 – счетчик времени наработки; 10 – ручка сливная; 11 – панель приборная;12 – тахометр; 13 – электронный блок; 14 – мановакуумметр; 15 – коллектор;

б: 16 – гидроблок; 17 – клапан падающий; 18 – датчик концентрации; 19 – тяга подъема вакуумного насоса; 20 – насосвакуумный; 21 – бак масляный; 22 – рукоятка механизма отключения вакуумного насоса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

22

21

20

19

18

17

16

а

б



Непосредственно на насосе установлены сливной кран 2, вакуумный кран 3, масляный бак 21 и вакуумный насос 20. Внутри коллектора находятся падающий клапан 17 и датчик концентрации пенообразователя 18. К коллектору присоединен гидроблок 16 с тягой 19, управляющий включением и выключением вакуумного насоса 20.

Рис. 2.26. Напорный вентиль:

1 – накладка; 2 – кольцо уплотнительное;3 – клапан; 4 – корпус клапана; 5 – корпусвентиля; 6 – манжета; 7 – втулка направляющая;8 – винт; 9 – пресс-масленка; 10 – втулка срезьбой; 11 – шпонка; 12 – маховик

1

2

3

4

5

6

7

8

9

10

11

12

Рис. 2.27. Шаровый кран:

1 – ручка; 2 – валик; 3 – втулка; 4 – кольцоуплотнительное; 5 – корпус; 6 – шарик;7 – уплотнительное кольцо; 8 – трубка от насоса

1

2

3

4

5

6

7

8

На приборную панель выведены рукоятки управления автоматической системой дозирования (АСД) 13 пенообразователя, тахометр 12, счетчик времени наработки 9 и ручка 10 слива воды из дозатора пеносмесителя.

Уровень масла в масляной ванне контролируется маслоуказателем 4.

Напорные вентили 5 и вентиль 7 заполнения цистерны (рис. 2.25) идентичны. На винте 8 размещен клапан 3 (рис. 2.26). При вращении маховичка 12 винт 8 ввинчивается во втулку 10, открывая путь воде из коллектора в рукавную линию.

Шаровые краны используются для слива воды из насоса и включения вакуумной системы.

Устройство сливного крана показано на рис. 2.27. В корпусе 5 крана находится шарик 6 с двумя отверстиями. Он уплотняется резиновыми кольцами 7. В положении, указанном на рисунке, вода непрерывно по трубке 8 поступает из канала А зоны уплотнения центробежного насоса (см. рис. 2.24, поз. А и 9) и из корпуса насоса и выливается за борт автомобиля. При повороте рукоятки 1 на себя вода сливается только из полости А.

Падающий клапан тарельчатого типа. Его устройство показано на рис. 2.28. Он предназначен для предотвращения обратного тока воды при остановке насоса, когда рукава поданы в верхние этажи, а также для герметизации полости насоса при работе вакуумной системы.

Рис. 2.28. Падающий клапан:

1 – крышка; 2 – направляющая;3 – магнит; 4 – замыкатель;5 – крышка; 6 – коллектор;7 – шток; 8 – клапан;9 – направляющий винт;10, 11 и 12 – уплотнительные кольца

1

2

3

4

5

6

7

8

9

10

11

12

На штоке 7 клапана установлен по-стоянный магнит 3, необходимый дляиндицирования нулевой подачи насоса.Она осуществляется магнитно-электри-ческим контактом 4, установленном нанаправляющей 2.

При работе насоса поток воды переместит клапан в верхнее положение. При прекращении подачи воды под тяжестью собственного веса он опустится вниз. Установленный на штоке магнит обеспечивает замыкание электрической цепи и на панели 13 (см. рис. 2.25, а) загорается лампочка “Нет подачи воды”.

1

2

3

4

5

6

7

8

9

Пеносмеситель является частью автоматической системы дозирования, включающей датчик концентрации и электронный блок управления (см. рис. 2.25, поз. 18 и 13). Пеносмеситель (рис. 2.29) закреплен на напорном коллекторе. Основные его части: водоструйный эжектор 1 с краном включения 2, дозатор 3, обратный клапан 7 и сливной 9 кран.

Рис. 2.29. Пеносмеситель:

1 – эжектор; 2 – кран включения эжектора; 3 – дозатор; 4 – шток клапана отсекающего; 5 – электромотор; 6 – шток клапана дозирующего; 7 – обратный клапан;8 – кран впуска воздуха; 9 – сливной кран

Диффузионный (выходной) конец эжектора вставлен в крышку центробежного насоса, а сопловой (входной) конец эжектора крепится к крану включения эжектора.

На схеме 2.29 пеносмеситель представлен в исходном (нерабочем) положении. При тушении пеной, открыв кран 2, из пожарного насоса поступит вода в эжектор 1. В камере В будет создано разрежение. Одновременно с этим в дозаторе 3 приподнимутся штоки 4 и 6 с клапанами. Тогда пенообразователь из пенобака будет поступать из камеры А в камеру Б (обратный клапан 7 при этом откроется) и В, а затем в пожарный насос (это показано стрелками).

Обратный клапан 7 лепесткового типа предотвращает доступ воды в пенобак при работе от гидранта в случаях, когда закрывают кран эжектора или останавливают насос, не закрыв предварительно кран подачи пенообразователя из пенобака в насос.

Сливной кран 9 предназначен для слива пенообразователя из полостей А и Б дозатора по окончании работы насоса. Ручка крана выведена на приборную панель (поз. 10 на рис. 2.25, а).

Рис. 2.30. Механизм управлениядозирующим клапаном:

1 – корпус механизма; 2 – сильфон;3 – шток; 4 – шток клапана; 5 – рычаг;6 – пружина; 7 – клапан отсечной

1

2

3

4

5

6

7

При открытом положении крана 9 и приподнятом положении клапана 6 проточная полость Б дозатора через специальное отверстие в области крана 9 сообщается с эжектируемой полостью В и через эжектор 1 со всасывающей полостью насоса. В этом положении кран 8 должен быть поставлен в положение «открыто» для поступления воздуха в насос при сливе пенообразователя, а также и воды.

Шток 4 клапана и шток 6 дозирующего клапана управляются специальными механизмами.

Механизм управления штоком 4 отсекающего клапана работает следующим образом (рис. 2.30).

Из ПН

Повышение давления в пожарном насосе будет деформировать сильфон 2, перемещая шток 3 вверх. Рычаг 5, поворачиваясь, переместит шток клапана 7 вверх. Полости Б и В на рис. 2.29 соединятся. При понижении давления в насосе пружина 6, разжимаясь, переместит клапан 7 в исходное положение.

Механизм управления дозирующим клапаном может работать в автоматическом режиме и при ручном управлении. Дозирующий клапан 1 (рис. 2.31) закреплен на зубчатой рейке 2, которая посредством редуктора, включающего детали 3, 4 и 5, приводится в движение электродвигателем 6. Последний управляется электронным блоком. При перемещении дозирующего клапана относительно проточного отверстия в корпусе изменяется проходное сечение проточной полости дозатора. Вследствие этого происходит изменение подачи пенообразователя в эжектор.

Рис. 2.31. Механизм управлениядозирующим клапаном:

1 – клапан дозирующий; 2 – зубчатая рейка; 3 – червячное колесо; 4 – червяк;5 – зубчатые колеса редуктора;6 – электромотор

1

2

3

4

5

6

Из пенобака

К эжектору

Рис. 2.32. Механизм ручногоуправления:

1 – зубчатая рейка; 2 – зубчатое колесо;3 – червячное колесо; 4 – червяк;5 – муфта; 6 – рукоятка управления;7 – пружина

1

2

3

4

5

6

7

Включение пеносмесителя осуществляется следующим образом. На приборной панели насоса (см. поз. 1 на рис. 2.25, а) показано, что эжектор пеносмесителя включился (см. поз. 2 на рис. 2.29). На приборной панели указаны концентрации пенообразователя – 3 и 6 %. Такие концентрации пенообразователя можно подавать в 1 – 5 пеногенераторов. При этом будет устанавливаться соответствующее положение дозирующего клапана ручным приводом. Схема привода дозирующего клапана представлена на рис. 2.32.

Червячное колесо 3 вмонтировано во фрикционную муфту 5. Основная ее часть закреплена шплинтом на оси рукоятки 6, а вторая прижимается к первой (основной) пружинами 7. Вследствие этого при повороте рукоятки 6 червячное колесо 3, удерживаемое червяком 4 (см. поз. 4 на рис. 2.31), не будет вращаться. При этом зубчатое колесо 2 переместит рейку 1 (см. поз. 2 на рис. 2.31) с ее дозирующим клапаном в необходимое положение, обеспечивающее требуемую подачу пенообразователя.

Автоматическая система дозирования (АСД) пенообразователя поддерживает на требуемом уровне его концентрацию. На лицевой панели электронного блока управления (рис. 2.33) размещены переключатели и индикаторы контроля работы системы.

Рис. 2.33. Панель электронного блока управления:

1, 5, 6 – индикаторные лампочки; 2 – тумблер;3 – переключатель типапенообразователя;4 – переключателькоррекции концентрациипенообразователя

1

2

3

4

5

6

Рис. 2.34. Схема размещения на ПЦНВ-20/200:

1 – вал насоса;2 – рабочее колесо

1

2

Коллектор

Подвод

Включение в работу осуществляется следующим образом. При включении тумблера 2 загорается индикаторная лампочка 1. Затем включается переключателем 3 тип пенообразователя, а переключателем 4 – коррекция его концентрации. При подаче пенообразователя будет гореть лампочка 6.

Принцип работы АДС основан на сравнении электрической проводимости раствора пенообразователя с электрическим эквивалентом раствора заданной концентрации. При изменении концентрации раствора пенообразователя изменится его электрическая проводимость. Ее рассогласование с электрическим эквивалентом зафиксируется в электронном блоке и будет выработан управляющий сигнал на электрический двигатель дозатора (см. поз. 6 на рис. 2.31). Двигатель изменит обороты и через систему зубчатых колес изменится положение клапана 1 и, следовательно, концентрация пенообразователя.

Пожарный центробежный насос высокого давления ПЦНВ-20/200. Центробежный насос выполнен трехступенчатым с осевым подводом и проходным валом. В качестве отводящих устройств на первых двух ступенях использованы направляющие аппараты с переводными каналами. Они размещены в крышках направляющих аппаратов.

Внутри корпуса насоса установлен ротор, в состав которого входит вал 1 и три рабочих колеса 2 (рис. 2.34). Уплотнения рабочих колес, межступенчатые и концевые уплотнения – торцового типа. Элементы уплотнений выполнены из силицированного графита.

Разгрузка ротора от осевой силы обеспечивается наличием у рабочих колес задних уплотнений и разгрузочных отверстий.

Рис. 2.35. Сливной кран:

1 – клапан; 2 – корпус;3 – шайба; 4 – шплинт;5 – пружина

1

2

3

4

5

Рис. 2.36. Напорныйшаровой кран:

1 – корпус; 2 – шар;3 – фторопластовоекольцо; 4, 5 – резиновые уплотнительные кольца;6 – червяк; 7 – секторчервячного колеса; 8 – ось

1

2

3

4

5

6

7

8

Для слива воды из полости насоса на его корпусе установлен сливной кран, а в нижней части крышек направляющих аппаратов размещены обратные клапаны. Они открываются при сливе воды и закрываются при работе насоса. Устройство сливного крана показано на рис. 2.35.

Напорный коллектор установлен на корпусе насоса и включает в себя обратный падающий клапан, вентиль для заполнения цистерны такого же типа, как на ПЦНН-40/100 и два шаровых крана с выходными патрубками.

Напорные шаровые краны насоса – левый и правый – объединены с червячными редукторами, идентичны по конструкции и отличаются только вариантом сборки. Устройство шарового крана показано на рис. 2.36.

В корпусе 1 крана помещен шар 2 с отверстием. Шар уплотнен фторопластовыми кольцами 3. Поджатие их производится резиновыми кольцами 5. В вертикальной плоскости кран уплотняется резиновыми кольцами 4. На оси 8 крана закреплен сектор 7 червячного колеса. Он приводится в движение маховичком (на чертеже не показан) червяка 6. Для слива воды из полостей уплотнения предусмотрены сливные краники по типу, представленному на рис. 2.35.

Приборная панель крепится на крышке насоса над пеносмесителем. На ней установлены мановакуумметр, тахометр, показывающий частоту вращения вала насоса и время наработки, а также манометр. На ней установлены также четыре индикатора на контрольные значения давления -0,6; -0,75; 7,5 и 30 кгс/см2, управляемые мановакуумметром и насосом.

На панели имеется индикатор нулевой подачи, вилка разъема для подключения насоса к системе электропитания пожарного автомобиля, а также тумблер для включения и переключения напряжения питания насоса и ручка сброса контрольной наработки. На ней предусмотрены гнезда для установки приборов контроля давления масла и температуры охлаждающей жидкости двигателя, приборов контроля уровня воды в цистерне и уровня пенообразователя в пенобаке, а также гнезда для установки выключателя освещения насосного отсека, выключателя прожектора и привода насоса.

Порядок включения насоса. Перед началом работы все краны должны быть закрытыми, а вакуумный насос отключен. Подача воды с подпором (из цистерны, гидранта, от другой автоцистерны) осуществляется в следующей последовательности. Собирают рукавные линии и органами управления цистерны подают воду в насос. Затем включают привод насоса и плавно открывают напорные краны. Регулируя частоту вращения вала двигателя, устанавливают давление на входе в пределах от 0,08 до0,6 МПа, а на выходе – не более 3,5 МПа.

Подача воды с открытого водоема производится с предварительным включением напорных кранов или напорного вентиля подачи воды в цис-терну. Вакуумный насос включают вручную и открывают вакуумный кран. Включив привод насоса, одновременно автоматически включится вакуум-ная система. При частоте вращения вала насоса в пределах 2500–2900 об/мин достигается избыточное давление в насосе 1,2 МПа, при котором автоматически отключится вакуумный насос.

Регулируя частоту вращения вала двигателя, устанавливают необхо-димое давление на выходе из насоса 1,2–3,5 МПа.

При необходимости снизить давление до уровня менее 1,2 МПа сле-дует предварительно вручную отключить вакуумную систему и закрыть вакуумный кран.

По окончании работы сливают воду из насоса, открыв все краны. В зимний период следует включать насос для того, чтобы он поработал без воды 10–20 с. Это необходимо сделать для удаления влаги из полости насоса, включая при этом на 3–5 с вакуумный насос. После этого закрывают все краны и ставят заглушки на патрубки.

Для обеспечения безопасной работы насоса следует:

при необходимости временно прекратить подачу воды: приоткрыть вентиль подачи воды в цистерну;

не допускать работу насоса при давлении на выходе более 3,43 МПа и частоте вращения вала более 3000 об/мин;

не допускать работу насоса «всухую» продолжительностью более1 мин;

в случае, если вода из цистерны полностью израсходована, загорается индикатор «подачи нет», при этом насос следует немедленно остановить.

Система подачи пены включает пеносмеситель, клапан пеносмесителя.

Рис. 2.37. Клапан пеносмесителя:

1 – корпус; 2 – диафрагма; 3 – пружина;4 – шток; 5 – направляющая шайба;6 – клапан; 7 – обратный клапанлепесткового типа

7

6

5

4

3

2

1

B

ПО

Б

А

ПО

Из ГК

Рис. 2.38. Принципиальная схема подачи пенообразователя:

1 – центробежный насос; 2 – клапанпеносмесителя; 3 – обратный клапан;4 – пеносмеситель; 5 – дозатор;6 – сливной кран; 7 – кран включенияпеносмесителя; 8 – водяной эжектор;9 – вакуумный кран; 10 – гидрокамера

3

2

1

10

4

5

6

7

8

9

Клапан пеносмесителя (рис. 2.37) предназначен для предотвращения перерасхода пенообразователя при работе автоматической вакуумной системы и при неработающем насосе. Это возможно, когда при включенном дозаторе происходит уменьшение напора, и автоматически включается вакуумная система или в случае, когда останавливают насос, не закрыв предварительно кран подачи пенообразователя из пенобака в насос.

Функционально клапан пеносмесителя включает в себя отсекатель магистрали «пенобак-пеносмеситель», управляемый давлением напорной полости центробежного насоса, и обратный клапан 7 лепесткового типа.

При работе центробежного насоса давлением из гидрокамеры вакуумной системы в полости В деформируется диафрагма 2. Вследствие этого будут разобщены полости А и Б. При включенном кране дозатора пенообразователь, преодолевая сопротивление лепесткового клапана 7, будет поступать в пеносмеситель.

Клапан пеносмесителя и пеносмеситель закреплены на коллекторе насоса.

Принципиальная схема подачи пенообразователя и пеносмесителя показана на рис. 2.38.

Устройство пеносмесителя принципиально не отличается от пеносмесителя ПС-5. Однако его дозатор 5 имеет три положения: 0 – закрыт, 1 и 2 – на один или два пеногенератора. Кроме того, на пеносмесителе имеется сливной кран 6 пробкового типа (см. рис. 2.35) для сообщения полости насоса с атмосферой при сливе воды. Особенностью является также то, что к пеносмесителю подключена магистраль вакуумной системы с вакуумным краном 9 шарового типа (см.рис. 2.27).

Подача водного раствора пенообразователя к пеногенераторам производится в такой последовательности. Подать ПО из пенобака в насос, перевести рукоятку крана пеносмесителя в положение «ОТК», установить давление на выходе из насоса от 1 до 2 МПа, плавно открыть напорные краны и установить дозатор в требуемое положение.

После окончания работы перекрыть поступление ПО в насос и уменьшить подачу насоса до 0,2–1,0 л/с и произвести промывку дозатора и насоса. Для этого следует переключить магистраль пенообразователя на подсос воды из посторонней емкости и установить рукоятку дозатора в положение 2. В этом положении необходимо поработать 3-5 мин при давлении на выходе из насоса от 1 до 2 МПа. В процессе промывки необходимо несколько раз повернуть рукоятку крана пеносмесителя из положения «ОТК» в положение «ЗАКР» и обратно. Следует также повернуть рукоятку дозатора.

Рис. 2.39. Компоновка рабочих колес ПЦНВ-4/400

Из водо-источника

К коллектору насоса

Пожарный центробежный насос высокого давления ПЦНВ-4/400. Насос ПЦНВ-4/400 предназначен для тушения пожаров водой или пеной, забирая воду только из цистерны или от гидранта. Насос четырехступенчатый со встречно расположенными колесами третьей и четвертой ступени по отношению к первым двум колесам (рис. 2.39).

Рабочие колеса насоса выполнены с полуоткрытыми цилиндрическими лопатками без переднего покрывающего диска. Рабочие колеса разделены направляющими аппаратами.

К выходному патрубку насоса крепится напорный коллектор. Внутри его расположен обратный (падающий) клапан, как в ранее описанных насосах. На коллекторе установлены два вентиля тарельчатого типа, пеносмеситель и перепускной клапан. Для слива воды из коллектора установлены два шаровых крана. Такой же кран установлен для слива воды из коллектора.

Пеносмеситель по конструкции аналогичен ПС-5. Однако его дозатор рассчитан на подачу пенообразователя для работы 1 или 2 стволов с 3 или 6 % его концентрации.

Перепускной клапан (ПК) обеспечивает частичный переток воды из насоса в цистерну при закрытых вентилях или выключенных стволах в цистерну, предотвращая перегрев насоса. Он также управляет работой отсечного клапана, перекрывающего поступление пенообразователя в насос.

Схема ПК показана на рис. 2.40 для случая, когда стволы отключены, насос работает и из коллектора 1 нет поступления воды в рукавные линии. Силой пружины (на схеме не показана) на оси 3 заслонка 9 перемещена в горизонтальное положение. В этом положении упором 4 клапан 6, укрепленный на рычаге 7, откроет отверстие в штуцере 5. Вода в небольшом количестве будет перетекать из полости А коллектора по отверстию штуцера 5 через отсечной клапан в цистерну пожарного автомобиля.

Рис. 2.40. Клапан перепускной:

1 – коллектор насоса; 2 – корпус клапана; 3 – ось заслонки; 4 – упор; 5 – штуцер; 6 – клапан; 7 – рычаг;8 – ось рычага; 9 – заслонка

1

2

3

4

5

6

7

8

9

A

Б

Рис. 2.41. Отсекающий клапан:

1 – корпус; 2 – обратный клапан; 3 – клапан;4 – штуцер для промывки; 5 – шток; 6 – сильфон; 7 – штуцер для подвода воды от перепускного клапана; 8 – втулка; 9 – штуцер для слива воды; 10 – штуцер для подвода воды в цистерну; 11 – штуцер для подвода пенообразователя к пеносмесителю

1

2

3

4

5

6

7

8

A

9

10

11

При включении стволов в работу поток Б воды переместит заслонку 9 в положение, указанное пунктиром. Рычаг 7 силой пружины (она не показана) на оси 8 клапаном 6 перекроет отверстие в штуцере 5, при этом перетекание воды прекратится.

Отсекающий клапан (ОК) (рис. 2.41) выполняет несколько функций: регулирует количество воды, перетекающее из ПК, автоматически перекрывает поступление пенообразователя из пенобака в насос в случае отключения подачи стволами и, наконец, используется для промывки системы подачи пенообразователя.

Из перепускного клапана вода поступает через штуцер 7 в полость А и из нее в полость сильфона 6. В зависимости от количества поступающей воды сильфон, деформируясь, будет перемещать шток 5 вверх. При этом изменяется проходное сечение в горизонтальном отверстии клапана 3, чем и регулируется перетекание воды в цистерну пожарного автомобиля.

При тушении пожара пеной в случае отключения пенных стволов клапаном 3 будет перекрыто поступление пенообразователя через штуцер 11, полости Г и В будут разобщены и поступление пенообразователя к пеносмесителю прекратится. При возобновлении работы стволов поступление воды из ПК прекратится. Сильфон, занимая исходное положение, вытолкнет воду через полость А и Б и штуцер 10 в цистерну.

Слив воды из системы ПК и ОК осуществляется через кран, установленный на штуцере 9 для слива воды.

Промывка системы подачи пенообразователя осуществляется водой, подаваемой к штуцеру 4. Вода поступает в полость В отсекающего клапана и через штуцер 11 в пеносмеситель.

Рис. 2.42. Схема компоновки рабочих колес ПЦНК-40/100-4/400:

1 – рабочее колесо ступени нормального давления; 2 – вал; 3 – фрикционный механизм включения мультипликатора; 4 – ведущее колесо мультипликатора; 5 – вал; 6 – рабочие колеса ступени высокого давления;7 – коллектор ступени высокогодавления; 8 – коллектор ступенинормального давления

1

2

3

4

5

6

7

8

d

b

c

c

a

Пожарный центробежный насос комбинированный ПЦНК-40/100-4/400. Насос комбинированный, двухступенчатый. На валу 2 насоса нормального давления укреплено рабочее колесо 1, механизм 3 включения ведущего зубчатого колеса мультипликатора 4 (рис. 2.42).

При включенной второй ступени, нормальном напоре 100 м и подаче40 л/с насос работает как насос ПЦНН-40/100. При этом вода поступает во всасывающий патрубок а, подается в коллектор 8, а затем в рукавную линию b.

При включенной второй ступени и отсутствии напорной линии b нормального давления вода из коллектора 8 первой ступени поступает по трубопроводу с во всасывающий патрубок колеса 6 насоса второй ступени, а затем, как показано стрелками, в коллектор 7 насоса высокого давления и в напорную линию d.

Первая ступень насоса конструкции отличается от ПЦНН-40/100 только наличием механизма 3 включения мультипликатора. Передаточное отношение мультипликатора равно 2,33. Смазка всех деталей осуществляется маслом из масляной ванны.

К выходному патрубку ступени высокого давления присоединен коллектор 7. На нем установлены два вентиля тарельчатого типа и перепускной клапан, как на насосе ПЦНВ-4/400. Он соединен трубкой с цистерной. На коллекторе имеется патрубок для соединения рукава на рукавной катушке со стволом-распылителем. На нем также предусмотрен отвод с обратным клапаном для продувки рукава катушки сжатым воздухом из рессивера тормозной системы.

Параметры технических характеристик насосов серии ПЦН представлены в табл. 2.2.

Таблица 2.2

Наименование показателя Размерность ПЦНН-40/100 ПЦНВ-20/200 ПЦНВ-4/400 ПЦНК-40/100-4/400

Номинальная подача л/с 40 20 4 40 и 4

Номинальный напор м 100 200 400 100 и 400

КПД - 0,6 0,6 0,4 0,6 и 0,215*

Потребляемая мощность кВт 65,4 65,5 39,2 65,5 и 73,6*

Частота вращения об/мин 2700 2700 6400 2700 и 6300

Высота всасывания м 7,5 7,5 - 7,5

Время всасывания с 40 40 - 40

Масса кг 100 150 40 150

* При работе одной или двух ступеней.

Примечания:

1. Потребляемая мощность и КПД ПЦНК указаны для случая подачи и напора нормального или высокого. При одновременной подаче воды секцией нормального и высокого напора ее величина равна соответственно 15 и 2 л/с (величины напоров номинальные). В этом случае общий КПД не менее 0,35, а потребляемая мощность не более 64,5 кВт.

2. Параметры характеристик в табл.2.2 получены при глубине всасывания 3,5 м и номинальных частотах вращения валов насосов. При максимальной глубине всасывания подача насосов уменьшается на 50 %.

Рабочие характеристики ПЦН были получены во ВНИИПО. Обрабатывая экспериментальные результаты, была получена общая формула зависимости напора Н, м, развиваемого насосами, потребляемой мощности N, кВт, и КПД в зависимости от величины подачи Q, л/с:

yi = Ai + BiQ – Ci Q2 + DQ3. (2.16)

Значения индексов i и коэффициентов А, В, С и D приводятся втабл. 2.3. Они получены при номинальных скоростях вращения валов насосов и высоте всасывания 3,5 м.

Таблица 2.3



п/п Наименованиепоказателя Размерность Константы

А В С D

1

2

3 ПЦНН-40/100

Напор Н

Мощность N

КПД м

кВт

% 92,55

20,6

0 0,815

0,957

3,2 0,014

0

0,036 0

0

0

1

2

3 ПЦНВ-20/200

Напор Н

Мощность N

КПД м

кВт

% 210

37,5

0 1,6

1,54

5,38 0,1

0

0,15 0

0

0,0015

1

2

3 ПЦНВ-4/400

Напор Н

Мощность N

КПД м

кВт

% 432

17,66

0 15,9

4,8

25,6 5,8

0

5,3 0

0

0,42

Рабочие характеристики ПЦН, построенные в соответствии с данными табл. 2.3, приводятся на рис. 2.43.

0

0

Рис. 2.43. Рабочие характеристики:

1 – ПЦНН-40/100; 2 – ПЦНВ-20/200;

3 – ПЦНВ-4/400

1

2

3



При необходимости иметь характеристики насосов при скоростях, отличных от номинальных, производят пересчеты в соответствии с методом подобия.

2.6. Вакуумные системы пожарных насосов

Для подачи воды центробежными насосами их рабочие полости и всасывающие рукава необходимо заполнить водой. Это осуществляется вакуумными системами. Их основу составляют вакуумные насосы и краны, трубопроводы и приводы управления.

На АЦ, АНР и мотопомпах в качестве вакуумных насосов применяют газоструйные, шиберные, поршневые и иногда водокольцевые насосы. Приводы к ним могут быть ручными или комбинированными: ручными и автоматическими. Последние обеспечивают автоматический забор воды при пуске насоса и восстановление обрыва водяного столба.

Газоструйные вакуумные системы. Эти системы применяются на АЦ и АНР с насосами ПН-40, ПН-60 и ПН-110.

В их систему входят вакуумные краны, газоструйные вакуумные аппараты (ГСВА), трубопроводы.

Вакуумный кран предназначен для соединения внутренней полости насоса с газоструйным вакуумным аппаратом. Он устанавливается на коллекторе насоса. Его устройство показано на рис. 2.44, а принципиальная схема – на рис. 2.45. На этом рисунке показано положение, когда кулачковый валик 11 отжал нижний клапан 13. В этом положении пружина верхнего клапана 8 прижмет его к седлу и разобщит полости Б и В. При таком положении клапанов 8 и 11 отсасываемый из насоса ГСВА воздух пройдет в полость А и Б и по трубке б к струйному насосу. Это показано сплошными стрелками. По заполнении насоса водой кулачковый валик поворачивают так, чтобы нижний клапан 13 разобщил полости А и Б, а верхний клапан 8 соединил полость Б и В. В этом положении струйный насос отсосет из полости Б и трубки, соединяющей вакуумный клапан с ГСВА, попавшую туда воду. Воздух по отверстию а поступит в полость В и Б и в трубку б.

В нижней части крана имеются два отверстия, закрытые глазками 1 из органического стекла (см. рис. 2.44). К одному из них крепится корпус 4 электрической лампочки. Через глазок контролируют заполнение насоса водой.

Рис. 2.44. Вакуумный кран:

1 – глазок; 2 – платик; 3 – упор рукоятки; 4 – корпус электро-лампочки; 5, 7, 12 – гайки; 6 – корпус крана;8 – верхний клапан; 9 – рукоятка; 10 – уплотнение; 11 – кулачковый валик; 13 – нижний клапан; 14 – пружина

1

2

3

4

5

7

8

9

10

11

12

13

14

Рис. 2.45. Принципиальная схема вакуумного крана:

8 – верхний клапан; 11 – кулачковый валик; 13 – нижний клапан

8

11

13

а

б



6



Газоструйные вакуумные аппараты устанавливают в системе выпуска отработавших газов двигателя внутреннего сгорания АЦ или АНР.

ГСВА состоит из корпуса с заслонками, струйного газового насоса и газовой сирены.

Блок газоструйного вакуум-аппарата и газовой сирены (рис. 2.46) состоит из корпуса 5 и крышки 10, изготовленных из серого чугуна. К корпусу 5 присоединены резонатор 1 и распределитель 2, составляющие газовую сирену, и струйный насос 12. Внутри корпуса на осях 6 установлены заслонки 3 и 14. На концах осей закреплены рычаги 7 и 11. Пружиной 13 заслонки прижаты к своим седлам. В этом положении отработавшие газы проходят от двигателя к глушителю.

Рис. 2.46. Газоструйный вакуумный аппарат:

1 – резонатор; 2 – распределитель; 3, 14 – заслонки; 4 – рычаг заслонки; 5 – корпус; 6, 9 – ось заслонки; 7, 11 – рычаги; 8 – фланец; 10 – крышка; 12 – струйный насос; 13 – пружина

1

2

3

4

5

6

7

8

9

10

11

13

12

14



Условия работы ГСВА очень тяжелые. Все его детали омываются горячими отработавшими газами двигателя. Поэтому большой и малый диски заслонок выполнены из жаростойкой легированной стали и приварены к стальным цилиндрам.

Заслонки 3, 14 устанавливаются так, что могут отклоняться от их осей на 5 – 6о. Этим обеспечивается плотное прилегание заслонок к седлам. Рычаги 4 жестко соединены с осями 6, поворачивающимися в стальных втулках. Струйный насос 12 крепится к фланцу ГСВА. К фланцу 8 диффузора присоединяется трубопровод от вакуумного крана.

Герметичность в месте соединения корпуса и крышки обеспечивается прокладками из асбостального полотна и подмоткой шнурового асбеста в выточках осей. Оси заслонок собирают на графитной смазке.

Включение ГВСА производят из насосного отделения при заднем размещении насоса. При этом заслонка 14 займет вертикальное положение и будет открыт путь отработавшим газам в струйный насос 12.

Сирену включает водитель в кабине. При этом заслонка 3 займет вертикальное положение, отработавшие газы будут проходить через распределитель 2 в резонатор 1. Изменяя обороты двигателя и, следовательно, количество выходящих отработавших газов, изменяют силу и тон звука, издаваемого сиреной.

Рис. 2.47. Вакуумная система с ГСВА:

1 – всасывающая сетка; 2 – всасывающий рукав; 3 – пожарный насос; 4 – вакуумный кран; 5 – коллектор двигателя; 6 – корпус ГСВА; 7 – заслонка; 8 – выхлопная труба;9 – струйный насос; 10 – трубка

1

2

3

4

5

6

7

8

9

10

Pa



Q



Работу системы всасывания рассмотрим по схеме, представленной на рис. 2.47. При вертикальном положении заслонки 7 ГСВА и включенном вакуумном кране 4 отработавшие газы двигателя Qp поступят в струйный насос 9. В его камере будет создано разрежение и из полости насоса 3 и всасывающих рукавов 2 начнется удаление воздуха Qэ. Под влиянием разности атмосферного давления Ра и разрежения поднимется обратный клапан во всасывающей сетке 1 и вода заполнит всасывающую линию. При выключении вакуумного крана камера струйного насоса будет соединена с атмосферой. Это позволит ГСВА удалить воду из трубки 10, если она туда попала при несвоевременном выключении вакуумного крана.

Проверка работоспособности вакуумной системы производится по величине создаваемого разрежения в насосе за нормативное время. Его величина 0,073–0,0076 МПа должна достигаться за 20 с. Герметичность насоса оценивается по падению разрежения в насосе. Оно не должно превышать 0,013 МПа за 2,5 мин.

Проверка осуществляется в такой последовательности. Всасывающий патрубок насоса должен быть закрыт заглушкой, вакуумный кран включен. Запустив двигатель, увеличивая его обороты, создают вакуум, оцениваемый по мановакуумметру. Выключив вакуумный кран, по секундомеру фиксируют время падения вакуума. Если в течение 2,5 мин оно будет меньше 0,013 МПа, насос и всасывающая система исправны и работоспособны.

Вакуумные системы с пластинчатыми насосами. Эти системы предназначены для обеспечения забора воды из открытых водоемов, автоматического восстановления подачи воды при обрыве водяного столба и проверки работоспособности системы и герметичности пожарного насоса. Включение ее в работу может осуществляться вручную или автоматически. Геометрическая высота всасывания этих систем до 7,5 м. Время всасывания 40 с. Такие системы используются на пожарных насосах ПЦНН-40/100, ПЦНВ-20/200.

1

2

3

4

5

6

Из ПН

Рис. 2.48. Схема механизмаотключения:

1 – корпус; 2 – пружина;3 – шток; 4 – сильфон; 5 – основание сильфона; 6 – мембрана

Вакуумная система насоса ПЦНН-40/100. Эта система включает пластинчатый вакуумный насос, вакуумный шаровой кран и гидроблок. Гидроблок служит для передачи давления напорной полости насоса в рабочую полость механизма автоматического отключения вакуумного насоса и вакуумного затвора.

Механизм отключения (рис. 2.48) предназначен для автоматического отключения и включения вакуумного насоса при заборе воды из открытых водоисточников. Он работает следующим образом.

При увеличении давления в коллекторе насоса будет деформироваться мембрана 6. Гидравлическая жидкость, заполняющая пространство между корпусом 1 и сильфоном 4, воздействуя на основание 5 сильфона 4, поднимет шток 3 и рычаг 11 (см. рис. 2.50) вверх. При уменьшении давления в насосе пружина 2 преодолеет усилие сильфона и механизм займет исходное положение.

Вакуумный затвор (рис. 2.49) предназначен для разъединения и соединения полостей вакуумного насоса и пожарного насоса. Его устройство и работа отличается от механизма отключения наличием дополнительного клапана 3 с пружиной 4. При повышении давления в корпусе 1 шток 2, поднимаясь, будет сжимать пружину, а затем плотно прижмет клапан к его седлу. При уменьшении давления в корпусе механизма шток постепенно обеспечит перемещение клапана и разъединяемые полости будут соединены.

Рис. 2.49. Схема вакуумногозатвора:

1 – корпус; 2 – шток;3 – клапан; 4 – пружина;ПН – пожарный насос

1

2

3

4

К вакуумному

насосу

Из ПН

Из ПН

Стабильная работа вакуумной системы обеспечивается тем, что порог срабатывания механизма отключения выше, чем порог срабатывания вакуумного затвора. Это обеспечивается регулированием затвора D (см. рис. 2.50).

Рис. 2.50. Вакуумная система пожарного насоса ПЦНН-40/100:

1 – всасывающий патрубок насоса; 2 – каток на валу насоса; 3 – коллектор пожарного насоса; 4 – рычаг крепления вакуумного насоса; 5 – вакуумный насос с катком фрикционной передачи; 6 – резервуар с маслом; 7, 14 – трубопроводы; 8 – трубопровод кколлектору; 9 – гидроблок; 10 – вакуумный затвор; 11 – рычаг привода; 12 – механизмотключения; 13, 15 – регулировочная гайка; 16 – пружина; 17 – вакуумный кран

1

2

3

7

8

9

10

11

12

13

14

15

16

17

5

4

6

Принципиальная схема вакуумной системы ПЦНН-40/100 представлена на рис. 2.50. Каток 5 фрикционной передачи, установленный на вакуумном насосе, силой собственного веса и пружиной 16 прижат к катку 2, установленному на валу пожарного насоса (см. рис. 5.14). Катки можно разобщить вручную, как показано стрелками. В разобщенном состоянии катков рычаг стопорится (на рисунке не показано). Разобщение катков 2 и 5 и их соединение может осуществляться также и автоматически. При заборе воды из цистерны или от пожарного водопровода вакуумный насос выключается вручную. Работа в автоматическом режиме осуществляется следующим образом. После ус-тановки рукавной всасывающей линии включают вакуумный кран 17 и пожарный насос. От катка 2 к катку 5 будет передаваться крутящий момент. Пластинчатый насос создает вакуум во всасывающей системе. В вакуумный насос непрерывно подается масло из резервуара 6. Под влиянием давления воды, поступающей из пожарного насоса по трубопроводу 8, в вакуумном затворе 10 клапан отключит вакуумный насос. Затем сработает механизм отключения 12 и системой рычагов 11 и 4 разобщит катки 5 и 2. В случае прекращения подачи воды насосом (обрыв водяного столба) механизм отключения примет исходное положение и каток 5 вакуумного насоса под тяжестью собственного веса и силой пружины 16 будет прижат к катку 2 насоса. Процесс всасывания воды восстановится.

Из изложенного выше (см. рис. 2.47) следует, что вакуумные системы пожарных насосов серии ПН включаются в работу от двигателя внутреннего сгорания и центробежный насос заполняется водой при невращающемся вале с рабочим колесом.

Пожарные насосы серии ПЦН имеют вакуумные системы, которые включаются в работу от привода центробежного насоса. Следовательно, вал и рабочее колесо на нем должны приводиться во вращение от КОМ при незаполненном водой насосе, т.е. элементы торцевого уплотнения не охлаждаются. В таком положении их нормальная работа допускается в течение не более одной минуты, как указывалось раньше. Это требует жесткой проверки работоспособности вакуумных систем.

Проверка работоспособности вакуумной системы осуществляется по двум параметрам.

Во-первых, проверяется герметичность насоса включением вакуумного насоса при скорости вращения вала насоса 2000–2500 об/мин. Вакуум должен создаваться в течение 20 с, равным 0,073–0,076 МПа. Его уменьшение на 0,0198 МПа не должно превышать 3,5 мин. Превышение этого времени свидетельствует о наличии в системе неплотностей. Их обнаруживают по утечкам воды при работе или опрессовкой избыточным давлением 0,6 МПа.

Во-вторых, проводится проверка производительности вакуумного насоса в следующей последовательности:

к всасывающему патрубку присоединяют два всасывающих рукава с заглушкой на свободном конце;

отключают вакуумный насос и открывают вакуумный кран;

запускают двигатель и при оборотах (2700±100) об/мин плавно включают вакуумный насос и секундомер;

отмечают время достижения разрежения 0,074 МПа; оно не должно превышать 40 с.

Если время разрежения будет больше 40 с, а его падение не превышает 3,5 мин (см. п. 1), то это свидетельствует о потере производительности вакуумного насоса.

В этом случае следует проверить целостность трубопроводов вакуумной системы. При необходимости разбирают вакуумный насос, проверяют состояние лопаток, гильзы и уплотнительных колец. Обнаруженные неисправности устраняют.

Проводится также проверка элементов привода вакуумного насоса. Рабочие поверхности катков должны быть гладкими, без выкрашивания и признаков неравномерного износа. Усилие прижатия катков проверяется динамометром при неработающем насосе. Усилие размыкания, измеренное на рычаге, должно быть в пределах (18±3) кг. Регулирование его осуществляется путем поджатия или ослабления пружины на рычаге.

Вакуумная система насоса ПЦНВ-20/200. Она предназначена для включения пластинчатого вакуумного насоса, гидрокамеры, водоотделителя, механизма отключения, вакуумного затвора и вакуумного шарового крана.

Гидрокамера предназначена для управления элементами автоматической вакуумной системы: вакуумным затвором (ВЗ), механизмом автоматического отключения (МО) вакуумного насоса и управления клапаном пеносмесителя (ПС).

Рис. 2.51. Гидрокамера:

1 – корпус; 2 – сильфон;3 – тройник; 4 – пружина; 5 – полость с гидравлической жидкостью

1

2

3

4

5

Гидрокамера (рис. 2.51) работает следующим образом. При повышении давления в пожарном насосе и в полости между корпусом 1 и сильфоном 2 он будет, преодолевая усилие пру-жины 4, сжиматься. При этом давление гидрав-лической жидкости в полости 5 будет увели-чиваться и жидкость через тройник 3 будет подаваться в МО, ВЗ и клапан ПС.

Исходное положение сильфон займет при уменьшении давления в пожарном насосе.

Механизм отключения по устройству и принципу аналогичен МО ПЦНН 40/100. Различие состоит в том, что сильфон деформируется не под давлением воды из пожарного насоса, а под влиянием гидравлической жидкости, передающей давление из гидрокамеры.

Водоотделитель (рис. 2.52) предназначен для задержания воды, поступающей в вакуумную систему на конечной стадии заполнения водой центробежного насоса. При этом будет повышаться давление в ГК, поплавок 2 поднимется по стержню 3 и закроет проход к вакуумному затвору.

Рис. 2.52. Водоотделитель:

1 – корпус; 2 – поплавок;3 – стержень

1

2

3

Рис. 2.53. Вакуумный затвор:

1 – корпус; 2 – мембрана;3 – золотник; 4 – пружина

1

2

3

4



Вакуумный затвор (рис. 2.53) предназначен для автоматического разобщения вакуумного насоса со всасывающей полостью ПЦНВ-20/200 при появлении избыточного давления в его напорной полости.

В исходном положении золотник 3 отжат пружиной 4, при этом открыт проход от ВО к ВН. При повышении давления в гидрокамере ГК мембрана 2 сожмет пружину 4 и золотник 3 перекроет проход от ВО к ВН.

Порог срабатывания вакуумного затвора, равный 0,74 МПа(7,5 кгс/см2), предусмотрен разработчиками его конструкции. Он меньше порога срабатывания механизма отключения.

Принципиальная схема вакуумной системы ПЦНВ-20/200 представлена на рис. 2.54. Она функционирует следующим образом.

Вручную рычагом 8 возможно разобщить катки 2 и 4. В этом положении вакуумный насос будет выключен и забор воды возможно осуществлять из цистерны или водопроводной сети.

При заборе воды из открытых водоисточников необходимо установить всасывающие рукава, включить вакуумный кран 12, а затем пожарный насос. Крутящий момент будет передаваться катками 2 и 4. Вакуумный насос начнет откачивать воздух из всасывающего патрубка насоса 1 через струйный насос 16 пеносмесителя 15, вакуумный кран 12, трубку в, водоотделитель 10, вакуумный затвор 9 и через пластинчатый насос с катком 4 в атмосферу. Насос начнет забирать воду и она будет поступать в гидрокамеру 11. Когда давление воды достигнет 0,74 МПа (7,5 кгс/см2), сработает гидрокамера 11. При этом водой будет заполняться трубопровод в и в водоотделителе 10 поплавок закроет ей доступ в вакуумный затвор. Повышенное давление в гидрокамере обеспечит срабатывание вакуумного затвора 9. Система всасывания будет отключена. Затем штоком механизма отключения 7 будет поднят рычаг 6. Катки 2 и 4 будут разъединены. При обрыве столба воды или уменьшении давления в пожарном насосе придут в исходное положение механизмы 7 и 9 и автоматически начнется процесс заполнения насоса водой. Работа вакуумного насоса сопровождается эжектированием масла из резервуара 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

14

17

18

19

в



Рис. 2.54. Вакуумная система пожарного насоса ПЦНВ-20/200:

1 – всасывающий патрубок центробежного насоса; 2 – каток на валу насоса;3 – коллектор; 4 – каток пластинчатого насоса; 5 – резервуар с маслом; 6 – рычаг;7 – механизм отключения; 8 – ручной привод; 9 – вакуумный затвор;10 – водоотделитель; 11 – гидрокамера; 12 – вакуумный шаровой кран;13 – клапан пеносмесителя; 14 – обратный клапан; 15 – пеносмеситель; 16 – струйныйнасос; 17 – дозатор; 18 – сливной кран; 19 – кран включения пеносмесителя

Порог срабатывания, равный 0,74 МПа, регулируется величиной зазора Г. Она должна быть в пределах (1,5±5) мм.

Проверка работоспособности вакуумной системы этого насоса производится аналогично тому, как это делается для насоса ПЦНН-40/100.

Вакуумная система насоса частично задействована для регулирования подачи пенообразователя. В пеносмеситель 15, включающий дозатор 17, струйный насос 16, кран включения пеносмесителя 19 и сливной кран 18 пенообразователь поступает из пенобака через обратный клапан 14 к клапану пеносмесителя 13. При уменьшении напора в насосе давление от гидрокамеры 11 выключит клапан 13. При увеличении напора в насосе он будет включен.

Рис. 2.55. Вакуумная системас водокольцевым насосом:

1 – центробежный насос; 2 – всасывающий трубопровод; 3 – вакуумный насос; 4 – питающий трубопровод;5 – воздухоотводящий трубопровод;6 – бачок вакуумного насоса;7 – воздухоотводящая труба

1

2

3

4

7

6

5

Схема вакуумной системы МАВ 200 IVEKO (рис. 2.55). Вакуумный водокольцевой насос 3 автоматически начинает работать при включении пожарного насоса 1. При этом на пульте управления насосом срабатывает сигнализатор. При достижении в напорной линии достаточного давления вакуумный насос автоматически отключается и лампочка сигнализатора гаснет.

Для работы вакуумного насоса необходимо питание его водой из бачка 6. Бачок заполняется водой не менее чем на 1/3 своего объема.

Зимой бачок заполняется смесью, состоящей из 20 % глицерина и 80 % воды. Можно использовать антифриз.

Работает система следующим образом. При включении вакуумного насоса 3 проходит его заполнение водой из бачка 6 по трубопроводу 4. При образовании водяного кольца в насосе 3 начнется образование вакуума в насосе 1. Воздух из насоса 1 будет поступать по трубопроводу 2 в насос 3, а затем по трубопроводу 5 и воздухоотводящей трубе 7 в атмосферу.

2.7. Неисправности центробежных насосов и их обслуживание

Неисправности (отказы), возникающие в насосных установках и водопенных коммуникациях, приводят к нарушению их работоспособности, снижению эффективности тушения пожаров и увеличению убытков от них. Отказы в работе насосных установок возникают вследствие ряда причин:

во-первых, они могут появиться вследствие неправильных действий водителей при включении водопенных коммуникаций. Вероятность отказов по этой причине тем меньше, чем выше уровень квалификации боевых расчетов;

во-вторых, они появляются из-за износа рабочих поверхностей деталей. Отказы по этим причинам неизбежны (их необходимо знать, своевременно уметь оценивать);

в-третьих, нарушения плотности соединений и связанные с ними утечки жидкости из систем, невозможности создания разрежения во всасывающей полости насоса (необходимо знать причины этих отказов и уметь устранять их).

Неисправности насосных установок ПН. Признаки возможных неисправностей, приводящих к отказам, их причины и способы устранения приводятся в табл. 2.4.

Таблица 2.4

Признакинеисправностей Причины неисправностей Способы устранения

При включении вакуумной системы в полости пожарного насоса не создается разрежение Подсос воздуха:

1. Открыт сливной кран всасывающего патрубка, неплотная посадка клапанов на седла вентилей и задвижек, не закрыты вентили, задвижки.

2. Неплотности соединений вакуумного клапана и насоса, стакана диффузора пеносмесителя, трубопроводов вакуумной системы, сальников насоса, пробкового крана 1. Плотно закрыть все краны, вентили, задвижки. При необходимости разобрать их и устранить неисправность.

2. Проверить плотность соединений, подтянуть гайки, при необходимости заменить прокладки.

При изношенных сальниках насоса заменить их

Пожарный насос не заполняется водой при большом разрежении Большая высота всасывания.

Расслоился пожарный всасывающий рукав.

Засорена всасывающая сетка Уменьшить высоту всасывания.

Заменить всасывающий рукав.

Очистить всасывающую сетку

Мановакуумметр не показывает давления (разрежения) при исправном насосе Неисправен мановакуумметр.

Засорен канал мановакуумметра или замерзла вода Заменить мановакуумметр.

Прочистить канал мановакуумметра

При работе пожарного насоса наблюдается стук и вибрация Имеет место кавитация.

Ослабли болты крепления насоса к раме.

Износились шарикоподшипники.

Попадание в насос посторонних предметов Уменьшить высоту всасывания или расход воды.

Подтянуть болты.

Заменить шарикоподшипники.

Удалить посторонние предметы из полостей колеса насоса

Пожарный насос сначала подает воду, затем его производительность уменьшается. Стрелка манометра сильно колеблется Появились неплотности во всасывающей линии, расслоение рукава, засорилась всасывающая сетка.

Засорились каналы рабочего колеса.

Неплотности в сальниках пожарного насоса Найти неплотности и устранить, заменить рукав, очистить сетку.

Разобрать пожарный насос, очистить каналы.

Подвернуть крышку масленки, заменить сальники

Окончание табл. 2.4

Признакинеисправностей Причины неисправностей Способы устранения

Пожарный насос не создает необходимого напора Частично засорены каналы рабочего колеса.

Большой износ уплотнительных колец.

Подсос воздуха.

Повреждение лопаток рабочего колеса Разобрать насос, очистить каналы.

Разобрать насос, заменить кольца.

Устранить подсос воздуха.

Разобрать насос, заменить колесо

Пеносмеситель не подает пенообразователь Засорен трубопровод из

бака к пеносмесителю.

Засорены отверстия дозатора 1. Разобрать, прочистить трубопровод.

2. Разобрать дозатор, прочистить его отверстия

Газовая сирена работает плохо, ослаблен звук Засорены каналы распределителя газа и резонатора.

Не полностью перекрывается заслонкой выпускной трубопровод Очистить каналы и резонатор.

Отрегулировать длину тяги. Разобрать, очистить заслонку

Газовая сирена работает после выключения Ослабла или сломалась пружина заслонки.

Нарушена регулировка длины элементов тяги Заменить пружину.

Отрегулировать тягу

Распределительный клапан лафетного ствола и клапан водопенных коммуникаций не открываются при открывании кранов на колонке Мало давление воздуха в тормозной системе.

Негерметичны соединения клапанов, кранов, трубопроводов.

Неисправен клапан-ограничитель Повысить напор в системе.

Подтянуть гайки штуцеров, заменить прокладки.

Разобрать, исправить

Неисправности насосных установок ПЦН. Признаки возможных неисправностей, приводящих к отказам, их причины и способы устранения приводятся в табл. 2.5.

Таблица 2.5

Признакинеисправностей Причины неисправностей Способы устранения

Вакуумный насос не включается Износ обрезиненного шкива привода вакуумного насоса 1. Отрегулировать зазор «Д» между толкателем механизма отключения и упором кронштейна вакуумного насоса (1,5-2 мм).

2. При полном износе резины (выдавливание резины за металлический обод – менее 0,5 мм) заменить шкив.

Продолжение табл. 2.5

Признакинеисправностей Причины неисправностей Способы устранения

Вакуумный насос работает, разрежение недостаточное Подсос воздуха:

во всасывающей линии;

б) через незакрытые сливные краны;

в) через масляный бак (при полном отсутствии масла);

г) через поврежденные вакуумные трубопроводы.

Проскальзывание катков вследствие:

а) попадания масла на поверхность трения;

б) недостаточного усилия прижатия катков.

Недостаточная подача смазки в вакуумный насос.

Неисправность обратного падающего клапана – зависание или неплотное прилегание к седлу 1. Проверить соединительные головки всасывающих рукавов, обнаружить и устранить неплотности в насосе, заправить масляный бак.

а) обезжирить катки бензином и просушить.

б) отрегулировать усилие прижатия.

3. Проверить расход масла и состояние маслопровода, при необходимости промыть маслопровод и отрегулировать расход масла.

4. Обнаружить и устранить неисправность падающего клапана. До устранения неисправности забор воды производить при закрытых вентилях

Вакуумный насос работает, разрежение в норме, вода в насос не поступает Засорена всасывающая сетка.

Расслоение всасывающих рукавов Очистить всасывающую сетку.

Заменить неисправные рукава

Вакуумный насос не отключается при давлении на выходе более0,4 МПа (4 кгс/см2)

(на ПЦНВ 20/200 – 1,2 МПа) Большое зазор «Д» между штоком механизма отключения и рычагом.

Большое усилие прижатия катков привода вакуумного насоса Отрегулировать зазор.

2. Отрегулировать усилие прижатия катков

5. При работе насоса происходит частое включение и отключение вакуумного насоса Срыв напора в результате недостаточного заглубления всасывающей сетки.

Срыв напора в результате неисправности вакуумного затвора (заклинивание клапана) Обеспечить погружение всасывающей сетки на глубину не менее 300 мм.

Устранить неисправность вакуумного затвора, до устранения неисправности допускается в качестве вакуумного затвора исполь-зовать вакуумный кран – закрывать вручную при по-явлении давления на выхо-де в пределах от 2,5 до3,5 кгс/см2

Продолжение табл. 2.5

Признакинеисправностей Причины неисправностей Способы устранения

На ПЦНВ-20/200 (дополнительно) 3. Срыв напора в результате несвоевременного срабатывания вакуумного затвора вследствие разгерметизации гидропривода управления 3. Проверить уровень жидкости в гидроприводе. Установить места неплотностей, устранить их

6. При работе насоса снизилась подача, давление на выходе ниже нормы Засорена всасывающая сетка.

Засорена защитная сетка на входе в насос

3. Подача насоса превышает допустимую для данной высоты всасывания.

4. Засорены каналы рабочих колес 1. Проверить всасывающую сетку.

2. Проверить целостность всасывающей сетки, при необходимости очистить защитную сетку на входе в насос.

3. Уменьшить подачу (число работающих стволов или частоту вращения).

4. Очистить каналы

7. При работе насоса наблюдаются стуки и вибрация 1. Ослабли болты крепления насоса.

2. Изношены подшипники насоса.

3. В полость насоса попали посторонние предметы.

4. Повреждено рабочее колесо 1. Подтянуть болты.

2.Изношенные подшипники заменить новыми.

3. Удалить посторонние предметы.

4. Заменить рабочее колесо

8. Вал насоса не прокручивается 1. В летний период – засорение насоса.

2. В зимний период – примерзание рабочего колеса и уплотнений 1. Очистить внутреннюю

полость насоса.

2. Прогреть насос теплым воздухом или горячей водой

9. Из дренажного

отделения насоса струйкой течет вода 1. Нарушение герметичности

концевого уплотнения вала 1. Заменить изношенные детали (узлы) концевого уплотнения

10. Не поворачивается рукоятка дозатора 1. Появление на поверхностях трения кристаллических отложений и продуктов коррозии в результате плохой промывки 1. Разобрать дозатор, очистить сопрягаемые поверхности от налета

11. Большой расход масла в масляной ванне подшипников вала 1. Износ резиновых манжет 1. Заменить манжеты

12. Вал насоса вращается, стрелка тахометра на нуле 1. Обрыв электрических цепей тахометра 1. Обнаружить и устранить обрыв электрических цепей

Продолжение табл. 2.5

Признакинеисправностей Причины неисправностей Способы устранения

13. При включенном эжекторе и открытом дозаторе пенообразователь в насос не поступает 1. Не срабатывает отсекающий клапан дозатора вследствие засорения трубопровода, подающего воду в управляющий клапаном сильфон 1. Прочистить трубопровод (канал)

Дополнительно на ПЦНВ-20/200

14. При работе пеносмесителя ПО в насос не подается или уровень его дозирования недостаточный 1. Разгерметизация привода управления вакуумной системой

2. Заклинивание золотника в клапане пеносмесителя или засорение его полости в результате плохой промывки 1. Обнаружить неплотности, где вытекает жидкость, устранить неплотности, проверить диафрагму вакуумного затвора.

2. Разобрать клапан пеносмесителя и очистить его полость и детали от загрязнений

15. При отсутствии подачи воды индикатор «Подачи нет» не горит 1. Обрыв цепей питания.

2. Перегорел светодиод (лампа).

3. Заклинивание падающего клапана в направляющей.

4. Неисправен магнито-электрический контакт 1. Обнаружить и устранить.

2. Заменить светодиод (лампу).

3. Выявить причины и устранить заклинивание.

4. Заменить магнито-электрический контакт

16. При включении АСД индикатор «АСД питание» не горит, рукоятка дозатора не двигается 1. Обрыв в цепи электропитания «пожарный автомобиль – электронный блок».

2. Недостаточное сцепление фрик-ционной муфты привода дозатора 1. Обнаружить и устранить обрыв в цепи.

2. Отрегулировать муфту

17. При включении АСД рукоятка дозатора не двигается, индикатор «АСД питание» горит 1. Обрыв в электрической цепи «электронный блок – электродвигатель» дозатора

2. Недостаточное сцепление фрикционной муфты привода дозатора 1. Обнаружить и устранить обрыв цепи

2. Отрегулировать муфты

18. При дозировании пенообразователя в автоматическом режиме качество пены неудовлетворительное, рукоятка дозатора не доходит до положения, соответствующего количеству работающих пеногенераторов 1. Высокая жесткость подаваемой насосом воды 1. При помощи корректора увеличить концентрацию пенообразователя или перейти на ручное дозирование

Окончание табл. 2.5

Признакинеисправностей Причины неисправностей Способы устранения

19. Повышенный расход пенообразователя при дозировании в автоматическом режиме, рукоятка дозатора останавливается в положении, соответствующем большему количеству пеногенераторов, чем подключено в действительности 1. Загрязнение электродов датчика концентрации пенообразователя 1. Очистить электроды датчика концентрации

20. При дозировании пенообразователя в автоматическом режиме рукоятка дозатора доходит до упора (положение «5-6 %»), а индикатор «АСД норма» не загорается, и электродвигатель дозатора продолжает вращаться 1. Не открывается отсекающий клапан дозатора, вследствие засорения трубопровода, подающего воду в управляющий клапаном сильфон.

2. Если неисправность появляется только в случае работы с большим количеством ГПС-600 (4-5 шт.), причина – увеличение гидравлического сопротивления магистрали пенообразователя в результате ее засорения.

3. Обрыв электрической цепи «электронный блок – датчик концентрации» 1. Прочистить трубопровод (канал).

2. При очередном ТО прочистить магистраль пенообразователя, в том числе полости дозатора.

3. Обнаружить и устранить обрыв цепи

21. Не работает счетчик времени наработки 1. Обрыв цепи электропитания между первичным пенообразователем и электронным блоком или между электронным блоком и показывающим прибором на панели.

2. Неисправность электронного блока

3. Неисправен счетчик времени наработки 1. Обнаружить и устранить обрыв цепи.

2. Заменить или отремонтировать электронный блок.

3. Заменить счетчик

В насосе ПЦНВ-4/400 отсутствует система всасывания, но в его конструкции имеются два клапана: перепускной и отсекающий. Неисправности в них служат нарушением нормальной работы насоса. Их перечень приводится в табл. 2.6.

Таблица 2.6

Признакинеисправностей Причины неисправностей Способы устранения

1. Из дренажного отверстия насоса струйкой течет вода 1. Нарушение герметичности концевого уплотнения 1. Разобрать насос, заменить изношенные детали уплотнения

2. При работе насоса его корпус сильно нагревается 1. Засорены проходные отверстия в перепускном и отсекающем клапанах 1. Снять клапаны, разобрать и устранить неисправности

3. Снизилась подача воды, давление в напорном коллекторе в норме 1. Заклинивание перепускного клапана 1. Снять клапан, устранить неисправность

4. При включенном эжекторе, открытом дозаторе и стволе-распыли-теле пенообразователь в насос не поступает 1. Неисправен перепускнойклапан.

2. Заклинивание отсекающего клапана 1. Снять клапаны, устранить обнаруженные неисправности

5. Уровень дозирования пенообразователя ниже нормы 1. Засорение магистрали пенообразователя, в частности, проточной полости отсекающего клапана 1. Разобрать и прочистить все элементы магистрали пенообразователя

В насосе ПЦНВ-4/400 могут возникать и другие неисправности, но они в большинстве случаев аналогичны неисправностям других насосов этой серии.

Техническое обслуживание (ТО) насосных установок. Техническое обслуживание – это комплекс операций по поддержанию работоспособности или исправности изделий при использовании по назначению. В ГПС проводят ряд ТО: ежедневное ТО (ЕТО), ТО-1 и ТО-2 после общего пробега пожарного автомобиля, равного соответственно 1500 и 7000 км. Кроме того, их обслуживание на пожаре и после пожара.

ТО на пожаре. Периодически контролировать герметичность насосной установки по утечке воды через соединения и сальники.

На насосах ПМ каждый час работы подается смазка в сальники через колпачковую масленку.

Поддерживать положительную температуру в насосном отсеке.

На насосах ПЦН контролировать подачу воды и не допускать перегрева насоса.

ТО после пожара. Слить воду из насоса. Зимой – из трубки, соединяющей ПН с газоструйным вакуум-аппаратом, удалить воду кратковременным его включением.

После тушения пожара пеной промыть водой систему подачи пенообразователя и насос.

Работы по регламентированному техническому обслуживанию приводятся в табл. 2.7.

Таблица 2.7

Вид обслуживания ПН-40УВ ПЦНН-40/400 и ПЦНВ-20/200 ПЦНВ-4/400

ЕТО 1. Проверить работоспособность кранов и вентилей, целостностькоммуникаций и уровень масла в картерах

2. Проверить работоспособность вакуумных систем

(проверка герметичности) 2. Очистить сетку во входе в насос

ТО-1 1. Выполняют объем ЕТО

2. Проверяют состояние и управляемость привода вакуумного аппарата из насосного отделения.

Разбирают пеносмеситель и очищают его, проверяют состояние кранов.

Проверяют крепление насоса 2. Проверяют затяжку креплений всех агрегатов.

3. Проверяют состояние элементов привода вакуумных насосов.

4. Проверяют производительность вакуумного насоса.

5. Заменяют масло в масляных ваннах опор вала 2. Проверяют работоспособность перепускного клапана

ТО-2 1. Выполняют объем работ ТО-1

2. Проверяют техническое состояние насоса и уровень дозирования пенообразователя.

3. Проверяют работоспособность контрольно-измерительных приборов 2. Смазывают винты напорных вентилей.

3. Проверяют уровень дозирования пенообразователя и очищают пеномагистрали насоса (при необходимости) 2. Заменяют масло в масляных ваннах опор вала

Глава 3

ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ

ДЛЯ ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ В ОЧАГ ПОЖАРА

Комплект пожарно-технического вооружения для подачи огнетушащих веществ в очаг пожара состоит из пожарных рукавов и гидравлического оборудования. Его использование позволяет формировать насосно-рукавную систему пожарного автомобиля (мотопомпы) в целях обеспечения подачи огнетушащих веществ. Элементы, составляющие комплект ПТВ, являются наиболее часто используемым пожарно-техническим оборудованием. Знание их технических характеристик и устройства позволит повысить эффективность использования насосно-рукавных систем пожарных автомобилей (мотопомп) при ликвидации пожаров.

3.1. Пожарные рукава

Пожарные рукава – это гибкие трубопроводы, оборудованные пожарными соединительными головками и предназначенные для транспортирования огнетушащих веществ.

Классификация пожарных рукавов

а

б

в

1

2

3

4

5

6

7

8

Вода для тушения пожаров подается насосами пожарных автомобилей и мотопомп из различных водоисточников. Наиболее простая схема подачи воды – это забор ее из цистерны пожарного автомобиля и подача насосом через магистральные 1 и рабочие 3 рукавные линии к стволам 4 (рис. 3.1, а).

Рис. 3.1. Схемы забора и подачи воды:

а – от цистерны пожарного автомобиля; б – от открытого водоисточника;в – от водопроводной сети; 1 – магистральная рукавная линия; 2 – разветвлениетрехходовое; 3 – рабочая рукавная линия; 4 – ствол пожарный ручной;5 – всасывающий рукав; 6 –напорно-всасывающий рукав; 7 – рукавный водосборник;8 – рукав напорный для работы от гидранта

Пожарные рукава, по которым огнетушащие вещества подаются под давлением, называются напорными. В случае использования открытых водоисточников (рис. 3.1, б) для забора воды используют всасывающие рукава 5. При заборе воды из водопроводной сети (рис. 3.1, в) используется напорно-всасывающий рукав 6 и короткий напорный рукав 8.

При достаточном давлении в водопроводной сети вода поступает в насос по рукавам 6 и 8. В случае недостаточного напора она всасывается насосом по напорно-всасывающему рукаву 6.

Всасывающие рукава. Для комплектации пожарных автомобилей и мотопомп используются рукава всасывающие классов «В» (рабочая среда – вода) и «КЩ» (рабочая среда – слабые растворы неорганических кислот и щелочей), подразделяющиеся в зависимости от условий работы на две группы: 1) всасывающие – для работы при разрежении и забора воды из открытых водоисточников; 2) напорно-всасывающие – для работы под давлением и при разрежении.

Устройство всасывающих рукавов показано на рис.3.2. Они состоят из внутренней резиновой камеры 3, двух текстильных слоев 2 и 6, проволочной спирали 4, промежуточного резинового слоя 5 и наружного текстильного слоя 1.

Резиновые слои обеспечивают рукаву воздухо- и водонепроницаемость, а также эластичность и гибкость. Проволочная спираль 4 увеличивает механическую прочность и исключает сплющивание рукава под действием атмосферного давления. На концах всасывающих рукавов имеются мягкие (без спирали) манжеты для навязывания рукава на головки соединительные всасывающие 7 отожженной оцинкованной проволокой диаметром 2,0 – 2,6 мм или металлическими оцинкованными хомутами.

2

1

3

7

6

5

4



Рис. 3.2. Конструктивное исполнение всасывающих и напорно-всасывающих рукавов:

1 – наружный текстильный слой; 2, 6 – текстильный слой; 3 – внутренняя резиновая камера; 4 – проволочная спираль; 5 – промежуточный резиновый слой;7 – головка соединительная всасывающая

На наружную поверхность манжеты каждого рукава наносится маркировка, содержащая наименование завода-изготовителя, номер стандарта, группу, тип, внутренний диаметр, рабочее давление (для рукавов 2-й группы), длину и дату изготовления.

Технические характеристики всасывающих рукавов, используемых на передвижной пожарной технике, представлены в табл. 3.1.

Таблица 3.1

Параметры Размерность Внутренний диаметр рукава, мм

75 125 200

Длина манжеты мм 100 150 150

Толщина резинового слоя, не менее:

внутреннего

промежуточного мм

мм 2,0

1,5 2,0

1,5 2,2

1,5

Длина рукава мм 4000 4000 4000

Минимальный радиус изгиба мм 400 600 900

Рабочее давление МПа 0,5 - -

Рабочий вакуум МПа 0,08 0,08 0,08

Масса 1 м рукава кг 3,1 6,3 13,5

Длина всасывающих рукавов определяется конструктивной особенностью пожарных автомобилей. Пенал для хранения всасывающих рукавов размещается, как правило, на надстройке пожарного автомобиля и имеет длину более 4 м. Конструкция пенала обеспечивает сушку всасывающих рукавов за счет обдува при движении пожарного автомобиля.

Всасывающие рукава, поступившие в пожарную часть или на рукавную базу, подвергаются входному контролю. При этом прежде всего проверяется наличие и данные маркировки. Рукава, прошедшие входной контроль, навязывают на головки соединительные всасывающие, после чего их подвергают испытаниям на герметичность при гидравлическом давлении и вакууме. Создав давление 0,2 МПа, его выдерживают 10 мин. На рукаве не должно быть разрывов, местных вздутий, деформации металлической спирали. Под вакуумом 0,08 МПа рукав выдерживают 3 мин, падение разрежения при этом не должно превышать 0,013 МПа. При испытании не должно быть сплющиваний и изломов. Находящиеся на пожарных автомобилях всасывающие рукава испытывают при проведении ТО-1 автомобиля.

Напорные рукава предназначены для транспортирования огнетушащих веществ под избыточным давлением и могут быть использованы для комплектации как пожарных кранов и переносных мотопомп (рабочее давление 1,0 МПа), так и передвижной пожарной техники.

В зависимости от конструктивных особенностей и используемых материалов напорные рукава подразделяются на типы, которые приведены на рис. 3.3.

Конструкция напорного рукава состоит из следующих элементов: армирующего каркаса (чехла), внутреннего гидроизоляционного слоя и наружного защитного слоя. Армирующие каркасы напорных рукавов ткут или вяжут из натуральных нитей (льна, хлопка и т.д.) или искусственных (лавсан, капрон и т.д.) волокон. Армирующий каркас образуется переплетением нитей под углом 90о. Продольные нити называются основой, а поперечные – утком.

Льноджутовые рукава

ТИПЫ НАПОРНЫХ РУКАВОВ

С ДВУСТОРОННИМ ПОКРЫТИЕМ

Льняные рукава

Прорезиненные рукава

Латексированные рукава

Рукава с двусторонним полимерным покрытием

Рукава на рабочее давление 3,0 МПа

АРМИРУЮЩИЙ КАРКАС (ЧЕХОЛ) ИЗ СИНТЕТИЧЕСКИХ ВОЛОКОН

АРМИРУЮЩИЙ КАРКАС (ЧЕХОЛ) ИЗ НАТУРАЛЬНЫХ ВОЛОКОН

С ВНУТРЕННИМ ГИДРОИЗОЛЯЦИОННЫМ СЛОЕМ И ПРОПИТКОЙ КАРКАСА

С ВНУТРЕННИМ ГИДРОИЗОЛЯЦИОННЫМ СЛОЕМ БЕЗ НАРУЖНОГО ПОКРЫТИЯ







Рис. 3.3. Классификация пожарных напорных рукавов

При использовании в различных климатических зонах напорные рукава могут быть двух видов. Исполнения «У», рассчитанные на работу при температуре окружающей среды от – 40 до + 45 °С и исполнения «УХЛ», рассчитанные на работу при температуре окружающей среды от – 50 до + 45 °С.

На передвижной пожарной технике применяют напорные рукава длиной (20±1) м, диаметром 51, 66, 77, 89, 150 мм.

Пожарные напорные рукава должны обладать высокой прочностью, способностью сопротивляться истиранию, действию солнечных лучей, гнилостным процессам, агрессивным средам, низким и высоким температурам. Гидравлическое сопротивление потоку воды должно быть возможно малым. Кроме того, к ним предъявляется ряд эргономических требований: легкость, малые габариты скаток, эластичность.

Напорные рукава из натуральных волокон имеют ограниченное применение. Сухие чистые льняные рукава сравнительно легкие, а их скатки малогабаритны. При подаче воды по таким рукавам наружная поверхность ткани чехла увлажняется вследствие просачивания воды через стенки чехла (перколяция). Это повышает термостойкость льняных рукавов в условиях пожаров. Однако повышенная склонность льняных рукавов к гнилостным процессам, большие гидравлические потери, а также сложность эксплуатации в условиях низких температур ограничивают область их применения на пожарных машинах.

Напорные рукава с армирующим каркасом из синтетических волокон имеют несколько вариантов конструктивного исполнения (см. рис. 3.3).

1

Рис. 3.5. Конструкция латексированного рукава:1 – армирующий каркас; 2 – внутреннийгидроизоляционный слой; 3 – наружнаялатексная пленка

1

2

3

Рис. 3.4. Конструкция напорного прорезиненного рукава: 1 – армирующий каркас; 2 – внутренний слой; 3 – клеевой слой

2

3

1

Устройство прорезиненного рукава, относящегося к типу напорных рукавов с внутренним гидроизоляционным слоем без наружного покрытия каркаса, показано на рис. 3.4. Такой рукав имеет армирующий каркас 1, выполненный из синтетических волокон. В качестве внутреннего гидроизоляционного слоя 2 применяется резиновая камера, которая вводится внутрь армирующего каркаса 1, предварительно смазанного резиновым клеем 3, и вулканизируется паром под давлением 0,3 – 0,4 МПа при температуре 120 – 140 °С в течение 40 – 45 мин.

Конструкция латексированного рукава представлена на рис. 3.5. Он относится к типу напорных рукавов с внутренним гидроизоляционным слоем и с пропиткой армирующего каркаса тем же материалом, что и гидроизоляционный слой.

Армирующий каркас 1 латексированного рукава изготавливают из синтетических волокон. Такой рукав имеет внутренний гидроизоляционный слой 2, выполненный из латексной пленки. Кроме того, армирующий каркас имеет пропитку раствором латекса, который образует наружную латексную пленку 3, выполняя функцию защитного слоя.

Рис. 3.6. Конструкция напорного рукавас двусторонним покрытием: 1 – армирующий каркас; 2 – внутренний слой;3 – наружный защитный слой

1

2

3

3

Конструкция напорного рукава с двусторонним покрытием показана на рис. 3.6. Рукава двухслойной конструкции с внутренним гидроизоляционным 2 и наружным защитным 3 покрытием обладают рядом преимуществ по сравнению с другими типами рукавов. Внутренний гидроизоляционный слой 2 обеспечивает минимальные гидравлические потери для потока огнетушащего вещества, а наружный защитный слой 3 предохраняет ткань армирующего каркаса от истирания, действия солнечных лучей. Это повышает надежность и долговечность рукавов.

К типу рукавов с двусторонним покрытием относятся напорные рукава с двусторонним полимерным покрытием и напорные рукава на рабочее давление 3,0 МПа.

Технические характеристики напорных пожарных рукавов для передвижной пожарной техники изложены в НПБ 152-2000, некоторые из них представлены в табл. 3.2.

Таблица 3.2

Параметры Размерность Все типы напорных рукавов для передвижной пожарной техники Рукава на рабочее давление 3,0 МПа

Внутренний диаметр, мм

51

66 77 89 150 51 66

Рабочее давление МПа 1,6 1,4 1,2 3,0

Разрывное давление, не менее МПа 3,5 2,8 2,4 6,0

Масса рукава длиной 1 м, не более кг 0,45 0,55 0,65 0,75 1,20 0,45 0,55

Толщина внутреннего слоя покрытия, не менее мм 0,35 0,35

Пожарные напорные рукава диаметром 77 мм и более применяют для прокладки магистральных линий (см. рис. 3.1), а диаметром 51 и 66 мм – рабочих рукавных линий.

Параметры технических характеристик напорных рукавов во многом определяют эффективность действий пожарных подразделений. Так, шероховатость внутренней поверхности рукавов оказывает влияние на потери напора воды в рукавной линии и регламентирует предельно возможную длину этой линии.

В напорных рукавах при подаче воды изменяется их длина и площадь поперечного сечения. Внутренний гидроизоляционный слой рукава под напором воды вдавливается в армирующий каркас (чехол) рукава. При этом формируется профиль шероховатости его внутренней поверхности, определяющей величину сопротивления потоку воды. Для рукавов длиной 20 м определены коэффициенты сопротивления Sp , указанные в табл. 3.3.

Таблица 3.3

Рукава Диаметр рукава, мм

51 66 77 89 150

С армирующим каркасом из синтетических волокон с внутренним гидроизоляционным слоем 0,13 0,034 0,015 0,007 0,0004

С армирующим каркасом из натуральных волокон без гидроизоляционного слоя 0,24 0,077 0,030 - -

Потери напора в магистральной рукавной линии, м, определяем по формуле

h м.р.л = Np Sp Q2, (3.1)

где Sp – коэффициент сопротивления одного рукава длиной 20 м (см. табл. 3.3); Q – расход воды в магистральной линии, л/с; Np – число рукавов в магистральной линии, шт., которое определяем по формуле

Np = 1,2 L/20, (3.2)

где L – расстояние от пожарного автомобиля до места подачи стволов, м.

Длина любой рукавной линии зависит, прежде всего, от гидравлических сопротивлений рукавов Sp и расхода Q подаваемой воды. Так, предельную длину магистральной рукавной линии, м, определяем по формуле

lпр = , (3.3)

где Zм – наибольшая высота подъема (+) или спуска (-) местности на предельном расстоянии, м; Zпр – наибольшая высота подъема (+) или спуска (-) приборов тушения, м.

Расход воды Q, л/с

Потери напора в рукаве длиной 20 м hp, м

0

2

1



Рис. 3.7. Зависимость потерь напора в одном рукаве длиной 20 мот расхода протекаемой воды:

1 – диаметр рукава 77 мм; 2 – диаметр рукава 66 мм

Определяющим параметром в технических характеристиках напорных рукавов является его внутренний диаметр, от которого зависит масса скатки рукава (см. табл. 3.2), рабочее давление, а также гидравлическая характеристика рукавной линии. На рис. 3.7 приведена зависимость потерь напора в одном рукаве магистральной линии длиной 20 м от расхода воды. Показано, как диаметр рукавов влияет на потери напора в линии.

Рукава различают и по теплофизическим характеристикам (рис. 3.8). Из анализа следует, что наилучшей теплоизолирующей способностью обладают латексированные рукава. У них меньшее значение коэффициента теплопроводности материала λ при отрицательных температурах. Это значит, что при подаче воды в условиях низких температур, ее охлаждение в линии из латексированных рукавов будет менее интенсивное по сравнению с другими типами рукавов. Вероятность обледенения такой рукавной линии снижается.

Указанные выше параметры напорных рукавов следует учитывать при их выборе для заданных условий эксплуатации.

Напорные рукава, поступившие в пожарную часть или на рукавную базу, после входного контроля навязываются на соединительные головки мягкой оцинкованной проволокой диаметром 1,6 – 1,8 мм (для рукавов диаметром 150 мм используется проволока диаметром 2,0 мм). После этого на рукав наносится маркировка принадлежности к рукавной базе или пожарной части. На рукавах, эксплуатируемых на рукавных базах, маркируется их порядковый номер. На рукавах, принадлежащих пожарной части, маркировка состоит из дроби, где в числителе указывается номер пожарной части, а в знаменателе – порядковый номер рукава. Далее рукава подвергаются гидравлическим испытаниям под давлением 1,0 МПа. Рукава на рабочее давление 3,0 МПа испытывают при рабочем давлении насоса автомобиля высокого давления.

Коэффициент теплопроводности ,Вт/(мград)

1

100

50

0

-50

0,2

0,3

0,4

Температура окружающей среды, °С

50

Т

3

2



Рис. 3.8. Зависимость коэффициента теплопроводности материала рукавовот температуры окружающей среды:1 – прорезиненный рукав; 2 – льняной рукав; 3 – латексный рукав



Рукава, выдержавшие гидравлические испытания, поступают на сушку и передаются для эксплуатации. На новые рукава заводят паспорта. Находящиеся в эксплуатации рукава испытывают после каждого обслуживания и ремонта, а также два раза в год при сезонном обслуживании пожарной техники.

3.2. Гидравлическое оборудование

Гидравлическое оборудование является элементом пожарного оборудования, относящегося к коммуникациям пожаротушения, и предназначено для формирования насосно-рукавных систем пожарных автомобилей (мотопомп) в целях обеспечения подачи огнетушащих веществ к месту тушения пожара.

В зависимости от назначения гидравлическое оборудование можно разделить на две группы (рис. 3.9). Наиболее распространенный вид оборудования – рукавная арматура – изготавливается из алюминиевых сплавов марок АК7 и АК7ч (АЛ9) по ГОСТ 1583 с последующей механической обработкой и состоит из следующих элементов (см. рис. 3.9).



ГИДРАВЛИЧЕСКОЕ ОБОРУДОВАНИЕ

РУКАВНАЯ АРМАТУРА

СТВОЛЫ ПОЖАРНЫЕ

Всасывающая пожарная сетка

Рукавный водосборник

Ручные пожарные стволы

Лафетные пожарные стволы

Стволы нормального давления

Стволы высокого давления

Рукавное разветвление

Головки соединительные

Напорные

Всасывающие



Рис. 3.9. Классификация гидравлического оборудования

Рис. 3.10. Всасывающая пожарная сетка:1– соединительная всасывающая головка; 2 – обратный клапан; 3 – рычаг для поднятия клапана; 4 – решетка

1

3

4

2

Всасывающая пожарная сетка (рис. 3.10) предназначена для предотвращения самостоятельного опорожнения всасывающей линии и попадания в нее посторонних предметов.

Всасывающая сетка состоит из корпуса, верхняя часть которого имеет штуцер для присоединения соединительной всасывающей головки 1, обратного клапана 2, рычага для поднятия клапана 3 и решетки 4. Всасывающую сетку присоединяют к всасывающим рукавам с помощью соединительной головки.

При работе насоса из открытого водоисточника во всасывающей линии создается разрежение. Вода под атмосферным давлением поднимает клапан 2 и поступает во всасывающую линию и далее в полость насоса. При остановке насоса клапан опускается в гнездо и всасывающая линия остается заполненной водой. Чтобы освободить линию от воды, необходимо при помощи веревки, прикрепленной к кольцу, повернуть рычаг 3, клапан приподнимется и вода вытечет из рукавов.

Всасывающие сетки выпускают различных типоразмеров (табл. 3.4).

Таблица 3.4

Показатели Размерность Сетки всасывающие

СВ-100А СВ-125А

Условный проход мм 100 125

Коэффициент гидравлического сопротивления - Не более 1,5

Пропускная способность л/с 20 40

Усилие для поднятия клапана при столбе воды высотой 8 мН 176 250

Масса кг 3,0 3,8

Рукавный водосборник предназначен для соединения двух потоков воды из пожарной колонки и подвода ее к всасывающему патрубку пожарного насоса, а также он используется при работе с гидроэлеватором и для перекачки воды на большие расстояния.

Рукавный водосборник состоит из корпуса-тройника, двух напорных соединительных цапковых головок ГЦ-80 для присоединения напорных или напорно-всасывающих рукавов и выходной соединительной головки для установки водосборника на всасывающем патрубке насоса. Внутри корпуса водосборника закреплен шарнирно-тарельчатый клапан для перекрывания одного входного патрубка при работе насоса от гидранта на один рукав.

Рукавное разветвление предназначено для разделения потока и регулирования количества подаваемого огнетушащего вещества, транспортируемого по напорным пожарным рукавам. В зависимости от числа выходных штуцеров и условного диаметра входного штуцера различают следующие типы разветвлений: трехходовые РТ-70 и РТ-80 и четырехходовые РЧ-150. Наибольшее распространение имеют трехходовые разветвления. Они имеют три выходных и один входной штуцер.

Четырехходовые разветвления применяют на передвижных насосных станциях и рукавных автомобилях.

Разветвления всех типоразмеров имеют в основном одинаковую конструкцию (рис. 3.11) и состоят из фигурного корпуса 8, входного 5 и выходного 7 патрубков. На всех патрубках разветвлений навернуты муфтовые соединительные головки. Входные патрубки снабжены запорными механизмами вентильного типа с тарельчатым клапаном 6, маховичком 1, шпинделем 3 и сальниковым уплотнением 2. Для переноса разветвления имеется ручка 4.

1



664321

3

5

8764321

764321

4321

21



Рис. 3.11. Разветвление трехходовое:

1 – маховичок; 2 – сальниковое уплотнение; 3 – шпиндель; 4 – ручка; 5 – входной патрубок; 6 – тарельчатый клапан; 7 – выходной патрубок;8 – фигурный корпус

Для обеспечения подачи воды от насосов пожарных высокого давления (типа НЦПВ-20/200) используют рукавные разветвления на рабочее давление до 3,0 МПа РТВ-70/300. Технические характеристики разветвлений представлены в табл. 3.5.

Таблица 3.5

Показатели Размерность Рукавные разветвления

РТ-70 РТ-80 РЧ-150 РТВ-70/300

Условный проход входного патрубка мм 70 80 150 70

Условный проход выходных штуцеров:

центрального

боковых мм 70

50 80

50 80

80 70

50

Рабочее давление МПа 1,2 1,2 0,8 3,0

Масса, не более кг 5,3 6,3 15,0 15,0

Головки соединительные пожарные – быстросмыкаемая арматура, предназначенная для соединения пожарных рукавов и присоединения их к пожарному оборудованию и пожарным насосам. В зависимости от назначения соединительные головки разделяют на напорные и всасывающие.

НапорныеВсасывающие

ГР (рукавная головка)ГРВ (рукавная головка всасывающая)

ГМ (муфтовая головка)ГМВ (муфтовая головка всасывающая)

ГЦ (цапковая головка)ГЗВ (головка-заглушка всасывающая)

ГП (переходная головка)

ГЗ (головка-заглушка)

Рис. 3.12. Соединительная рукавная головка:

1 – втулка; 2 – уплотняющее резиновое кольцо; 3 – клык; 4 – обойма

1

2

3

4

Соединительные рукавные головки (ГР и ГРВ) (рис. 3.12) состоят из втулки 1, несущей в канавке торцевой кромки уплотняющее резиновое кольцо 2 (типа КВ – для всасывающих головок и КН – для напорных головок), и обоймы 4 свободно надетой на втулку. На обойме отлиты два клыка 3 и наружная спиральная наклонная площадка, с помощью которых соединяются две головки и достигается их уплотнение. Рукавные головки навязывают на концы пожарных рукавов соответствующего диаметра.

Муфтовая и цапковая соединительные головки состоят из одной втулки, с одной стороны которой имеется резьба, а с другой – на торцевой кромке – канавка для уплотняющего резинового кольца и по наружной поверхности – два клыка со спиральными наклонными площадками. У муфтовых головок резьба внутренняя, а у цапковых – наружная.

Головка-заглушка предназначена для закрывания пожарных соединительных головок и представляет собой соединительную обойму с крышкой.

Переходная головка предназначена для соединения напорных рукавов или другого водопенного оборудования с разными условными проходами. Переходная головка состоит (рис. 3.13) из двух несущих втулок 2 и 4 с разными условными проходами, соединенных между собой, и двух обойм 1 и 3, аналогичных соответствующим рукавным головкам.

Рис. 3.13. Переходная головка:

1, 3 – обойма,2, 4 – несущая втулка

1

2

3

4

Напорные и всасывающие соединительные головки классифицируются в зависимости от их максимального рабочего давления, типов и условных проходов.

Стволы пожарные – устройства, устанавливаемые на концах напорных линий для формирования и направления огнетушащих струй. Пожарные стволы в зависимости от пропускной способности и размеров подразделяются на ручные и лафетные, а в зависимости от вида подаваемого огнетушащего вещества – на водяные, пенные и комбинированные.

Ручные пожарные стволы предназначены для формирования и направления сплошной или распыленной струи воды, а также (при установке пенного насадка) струй воздушно-механической пены низкой кратности. Стволы в зависимости от конструктивных особенностей и основных параметров классифицируются на стволы нормального давления и стволы высокого давления (рис. 3.14).

СТВОЛЫ ПОЖАРНЫЕ







Ручные пожарные стволы

Лафетные пожарные стволы





Переносные





Стволы нормального давления

Стволы высокого давления



Возимые







Стационарные





Формирующие распыленную струю

Формирующие сплошную струю



С дополнительной защитной завесой





Комбинированные, формирующие водяные и пенные струи

Универсальные, формирующие распыленную и сплошную струю





Рис. 3.14. Классификация пожарных стволов

Стволы нормального давления обеспечивают подачу воды и огнетушащих растворов при давлении перед стволом от 0,4 до 0,6 МПа, стволы высокого давления – при давлении от 2,0 до 3,0 МПа. Для стволов нормального давления определяющей характеристикой является условный проход соединительной головки. В связи с этим стволы подразделяют на два типоразмера: Ду 50 и Ду 70.

В зависимости от конструктивного исполнения ручные стволы могут иметь широкие функциональные возможности (см. рис. 3.14). Так, к формирующим только водяную струю относятся стволы РС-50 и РС-70, которые имеют одинаковую конструкцию и отличаются лишь геометрическими размерами. Они состоят (рис. 3.15) из корпуса конической формы 1, внутри которого установлен успокоитель 2 соединительной муфтовой головки 3, предназначенной для присоединения ствола к напорному рукаву, ремня 4 для переноски ствола, сменного насадка 6. На корпус ствола насаживается оплетка красного цвета 5, обеспечивающая удобство удержания ствола в руках при работе.

2

3

1

6

5

4



Рис. 3.15. Ствол ручной пожарный РС-70:

1 – корпус; 2 – успокоитель; 3 –соединительная головка; 4 –ремень;5 –оплетка; 6 – насадок

4

3

2

1

6

5



Рис. 3.16. Ствол ручной пожарный перекрывной КР-Б:

1 – корпус; 2 – кран пробковый; 3 – насадок; 4 – ремень; 5 – оплетка;6 – соединительная головка

К этому типу относится ствол перекрывной КР-Б (рис. 3.16). Отличительной особенностью ствола является наличие в конструкции пробкового крана 2, обеспечивающего возможность прекращать подачу воды. Технические характеристики стволов, формирующих только сплошную водяную струю, представлены в табл. 3.6.

Таблица 3.6

Показатели Размерность Стволы пожарные ручные водяные сплошной струи

РС-50 РС-70 КР-Б

Диаметр насадка

Расход воды при давлении у ствола 0,4 МПа

Дальность водяной струи

Масса

мм

л/с

м

кг 13

3,6

28,0

0,7 19

7,4

32,0

1,5 13

3,3

22,0

1,7

Конструкция универсальных ручных пожарных стволов позволяет управлять струей и они предназначены для формирования как сплошной, так и распыленной струи воды.

Ствол РСК-50 состоит из корпуса 5, пробкового крана 3, насадка 12, соединительной напорной головки 6 (рис. 3.17).

7

8

9

12

11

10

4

6

5

3

2

1



Рис. 3.17. Ствол ручной пожарный РСК-50:

1,2,9 – каналы; 3 – пробковый кран; 4 – ручка; 5 – корпус; 6 – соединительная головка; 7,10 – отверстия; 8 – полость; 11 – тангенциальные каналы; 12 – насадок

При положении ручки 4 пробкового крана 3 вдоль оси корпуса 5 поток жидкости проходит через центральное отверстие центробежного распылителя и далее выходит из насадка 12 в виде компактной струи. При повороте ручки крана на 90° центральное отверстие перекрывается и поток жидкости из полости 8 пустотелой пробки крана через отверстия 7 и 10 поступает в каналы 2 и 9. Через тангенциальные каналы 11 жидкость попадает в центральный распылитель и выходит из него закрученным потоком, который под действием центробежных сил при выходе из насадка распыляется, образуя факел с углом раскрытия 60°. Аналогичный принцип работы заложен в конструкции универсальных стволов РСП-50 и РСП-70. Ствол РСКЗ-70 позволяет, кроме того, дополнительно формировать защитную водяную завесу. Для формирования и направления сплошной или распыленной конусообразной струи воды предназначены стволы-распылители РС-А и РС-Б (рис. 3.18).

6

4

5

3

2

1



Рис. 3.18. Ствол-распылитель ручной РС-А (РС-Б):

1 – распылитель; 2 – устройство перекрытия потока воды; 3 – корпус; 4 – соединительная головка; 5 – оплетка; 6 – ремень

Эти стволы идентичны и отличаются только геометрическими размерами. Стволы состоят из корпуса 3, распылителя 1, устройства перекрытия потока воды 2, соединительной головки 4, ремня 6 и оплетки 5, служащей для удержания ствола в руках при работе.

Технические характеристики универсальных ручных пожарных стволов и ствола РСКЗ-70 с защитной завесой представлены в табл. 3.7.

Таблица 3.7

Показатели Размерность Стволы пожарные ручные водяные универсальные С защитной завесой

РС-А РСК-50 РСП-50 РСП-70 РСКЗ-70

Расходы воды при давлении у ствола 0,4 МПа:

сплошной струи

распыленной струи

защитной струи

Дальность струи при давлении у ствола 0,4 МПа:

сплошной струи

распыленной струи

Угол факела защитной завесы

Присоединительная арматура ствола

Масса ствола л/с

л/с

л/с

м

м

град.

-

кг -

3,1

-

-

-

-

ГМ-70

2 2,7

2,7

-

30

12

-

ГМ-50

2,2 2,7

2,0

-

30

11

-

ГМ-50

1,6 7,4

7,0

-

32

15

-

ГМ-70

2,8 7,4

7,0

2,3

32

15

120

ГМ-70

3,0

Наиболее многофункциональными являются комбинированные ручные стволы, которые позволяют формировать как водяную, так и пенную струю.

3

4

2

1

5



Рис. 3.19. Ствол ручной комбинированный ОРТ-50:

1 – головка соединительная; 2 – корпус; 3 – головка; 4 – пеногенератор; 5 – рукоятка

В качестве примера рассмотрим ствол ОРТ-50 (рис. 3.19), который состоит из следующих основных элементов: корпуса 2 с присоединенной муфтовой рукавной головкой 1, рукоятки 5, головки 3 и съемного насадка-пеногенератора 4. Ствол ОРТ-50 формирует сплошные и распыленные водяные струи, дает возможность получить водяную завесу для защиты ствольщика от теплового воздействия, а также позволяет получать и направлять струю воздушно-механической пены низкой кратности. Технические характеристики ствола ОРТ-50 представлены в табл. 3.8.

Таблица 3.8

Показатели Размерность Ствол ручной комбинированный ОРТ-50

Рабочее давление

Расход воды при давлении у ствола 0,4 МПа:

сплошной струи

распыленной периферийной струи (при факеле струи 30°)

Дальность водяной струи:

сплошной струи

распыленной струи

Рабочее давление при подаче пены

Расход 4 – 6% раствора ПО

Кратность пены

Дальность подачи пены

Масса МПа

л/с

л/с

м

м

МПа

л/с

м

кг 0,4 – 0,8

2,7

2,0

30,0

14,0

0,6

5,5

10

25

1,9

Для оценки тактико-технических возможностей пожарных стволов определяющими являются параметры формирующейся на стволе струи. Теория струй детально изучается в курсе гидравлики, поэтому рассмотрим лишь наиболее важные для нас ее составляющие.

Если струю пожарного ствола направить вертикально вверх, то она будет иметь два характерных участка (рис. 3.20):





RP



α

-4889546990Рис. 3.20. Характерные участки для струй ручных пожарных стволов

Sк – компактную часть струи и Sв – максимальную высоту струи. Как правило, водяные стволы на пожарах работают не вертикально вверх, а под определенным углом α. Если при одном и том же напоре у насадка постепенно изменять угол наклона ствола, то конец компактной части струи будет описывать траекторию, которая называется радиусом действия компактной струи Rк. Для ручных стволов эта траектория будет близка к радиусу окружности

Rк = Sк.(3.4)

Минимальная длина компактных струй ручных стволов равняется в среднем 17 м, для ее создания у стволов с диаметром насадка 13,16,19,22 и 25 мм требуется создавать напор 0,4 – 0,6 МПа.

Расстояние от насадка ствола до огибающей кривой раздробленной струи Rр возрастает с уменьшением угла наклона α к горизонту:

Rр = β Sв,(3.5)

где β – коэффициент, зависящий от угла наклона α .

Наибольшая дальность полета струи по горизонтали наблюдается при угле наклона ствола α = 30°.

Важным параметром для ручных пожарных стволов является реакция струи – сила, возникающая при истечении жидкости из насадка ствола.

Известна зависимость для определения силы реакции струи F, H:

F = -2 p ω, (3.6)

где p = ρ g H; ω – площадь выходного сечения насадка, м2; ρ – плотность жидкости, кг/м3; g = 9,8 м2/с; H - напор на стволе, м.

Знак минус указывает, что сила реакции направлена в сторону, противоположную движению струи (рис. 3.21, б). Так, сила реакции струи для ручных стволов при напоре 0,4 МПа достигает 400 Н. Для ее компенсации требуется работа со стволом двух человек.

а

б



Рис. 3.21. Силы реакции струй ручных пожарных стволов:

а – для стволов пистолетного типа; б – для ручных пожарных стволов

В результате совершенствования конструкции разработаны ручные пожарные стволы пистолетного типа, сила реакции струи для которых разделяется на несколько составляющих и направлена вверх (рис. 3.21, а). Это значительно упрощает работу ствольщиков при тушении пожаров.

Стволы лафетные комбинированные (водопенные) предназначены для формирования сплошной или сплошной и распыленной с изменяемым углом факела струй воды, а также струй воздушно-механической пены низкой кратности. Лафетные стволы подразделяются на стационарные, монтируемые на пожарном автомобиле; возимые, монтируемые на прицепе, и переносные.

Переносные лафетные стволы входят в комплект пожарных автоцистерн и насосно-рукавных автомобилей. Переносной лафетный ствол ПЛС-П20 (рис. 3.22) состоит из корпуса 1, двух напорных патрубков 3, приемного корпуса 4, фиксирующего устройства 5, рукоятки управления 6. В приемном корпусе имеется обратный шарнирный клапан, который позволяет присоединять и заменять рукавные линии к напорному патрубку без прекращения работы ствола. Внутри корпуса 1 трубы ствола установлен четырехлопастной успокоитель. Для подачи воздушно-механической пены водяной насадок на корпусе трубы заменяют на воздушно-пенный 2.

6

5

4

3

2

1

1



Рис. 3.22. Переносной пожарный лафетный ствол ПЛС-П20:

1 – корпус ствола; 2 – воздушно-пенный насадок; 3 – напорный патрубок;4 – приемный корпус; 5 – фиксирующее устройство; 6 – рукоятка управления

Основные технические характеристики лафетного ствола ПЛС-П20 представлены в табл. 3.9.

Таблица 3.9

Показатели Размерность Диаметр насадка, мм

22 28 32

Рабочее давление

Расход воды

Расход пены

Длина струи:

воды

пены МПа

л/с

м3/мин

м

м

6,0

19

-

61

- 6,0

23

12

67

32 6,0

30

-

68

-

3.3. Приборы и аппараты для получения воздушно-механической пены

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 3.23).

ПЕННЫЕ ПОЖАРНЫЕ СТВОЛЫ







Для получения пены средней кратности

Комбинированные для получения пены низкой и средней кратности

Для получения пены низкой кратности



Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8, с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а сдругой – на винтах присоединена труба 5, изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6, вакуумная 3 и выходная 4. На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1, имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

8

7

5

4

3

2

6

1



Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1, создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

3

2

1

4



Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель Размерность Тип ствола

СВП СВПЭ-2 СВПЭ-4 СВПЭ-8

Производительность по пене м3/мин 4 2 4 8

Рабочее давление перед стволом МПа 0,4 – 0,6 0,6 0,6 0,6

Расход воды л/с - 4,0 7,9 16,0

Расход 4 – 6 % раствора пенообразователя л/с 5 – 6 - - -

Кратность пены на выходе из ствола - 7,0

(не менее) 8,0

(не менее)

Дальность подачи пены м 28 15 18 20

Соединительная головка - ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Показатель Размерность Генератор пены средней кратности

ГПС-200 ГПС-600 ГПС-2000

Производительность по пене л/с 200 600 2000

Кратность пены 80 – 100

Давление перед распылителем МПа 0,4 – 0,6

Расход 4 – 6 % раствора пенообразователя л/с 1,6 – 2,0 5,0 – 6,0 16,0 – 20,0

Дальность подачи пены м 6 10 12

Соединительная головка - ГМ-5 ГМ-70 ГМ-80

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток 2, распылителя центробежного 3, насадка 4 и коллектора 5. К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа 3 имеет шесть окон, расположенных под углом 12°, что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Рис. 3.27. Диаграмма радиуса действия (а) и карта орошения УКТП «Пурга-7» (б)

Рис. 3.26. Генератор пены средней кратности ГПС-600:

1 – корпус генератора; 2 – пакет сеток; 3 – распылитель центробежный;4 – насадок; 5 – коллектор

1

2

3

4

5

б

а

В качестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Таблица 3.12

Показатель Размер-ность Установка комбинированного тушения пожара (УКТП) типа

«Пурга-5» «Пурга-7» «Пурга-10» «Пурга-10.20.30» «Пурга-

20.60.80» «Пурга-30.60.90» «Пурга-200–240»

Производительность по раствору пенообразователя л/с 5–6 7 10 30 80 90 200–240

Производительность по пене средней кратности л/с 350 490 700 1200 2400 2700 6000

Дальность подачи струи пены средней кратности м 20 25–30 30 45–50 70 85 90–100

Рабочеедавлениепередстволом МПа 0,8 0,8 0,8 0,8 0,8 0,9–1,2 1,0–1,4

Кратность пены – 70 70 60–70 30–40 30 30 30

Расход

пенообразователя л/с 0,36 0,4 0,8 1,8 4,8 5,0 12,0

Глава 4

ОГНЕТУШИТЕЛИ

Огнетушители – переносные (или передвижные) устройства для тушения очага пожара распылением запасенного огнетушащего вещества. Это наиболее массовые и доступные средства пожаротушения. Их рекомендуют для тушения загораний на рабочих местах в технологических процессах ряда производств, в жилых помещениях, в общественных и промышленных сооружениях, на транспорте и т.д. Вот поэтому они и являются первичными средствами пожаротушения.

В номенклатуре основных средств пожарной техники огнетушители по объему производства занимают более 45 – 50 %.

Эффективность их применения очень высокая. Средняя площадь пожаров на объектах, оснащенных огнетушителями, в 7,5 – 9,5 раз меньше, чем площади пожаров на объектах, где они отсутствуют. При этом в 8 – 10 раз снижаются и потери от пожара.

4.1. Классификация огнетушителей и методы оценки

их огнетушащей способности

Огнетушители (ОТ) по виду применяемого огнетушащего вещества подразделяются на водные (ОВ), воздушно-пенные (ОВП), порошковые (ОП) и газовые, в том числе: углекислотные (ОУ), хладоновые (ОХ).В зависимости от вида используемого огнетушащего вещества огнетушители можно применять для тушения загораний одного или нескольких классов пожаров горючих веществ: А, В, С и Е.

Общие технические требования к огнетушителям и параметрам их характеристик, обеспечивающих эффективное тушение, сформулированы в нормативно-технической документации – НПБ 155-96. Пожарная техника. Огнетушители переносные.

В зависимости от массы огнетушащего вещества устанавливаются минимальные длина, м, струи огнетушащего вещества и продолжительность его подачи, с.

Оценка огнетушащей способности огнетушителей осуществляется на основании их огневых испытаний. Для этой цели созданы специальные модельные очаги пожара класса А и класса В. Модельные очаги пожара класса С и Д не установлены.

Модельные очаги пожаров класса А представляют собой деревянный штабель в виде куба (рис. 4.1). Штабель размещается на двух металлических уголках 2, которыеуложены на бетонные (или ме-таллические) тумбы 3 высотой (400±10) мм.

Рис. 4.1. Устройство деревянного штабеля (модельного очага) для проведения испытаний

по тушению пожаров класса А:

1 – деревянные бруски; 2 – стальной уголок; 3 – бетонный (металлический) блок

3

1

2

В качестве горючего материала используют бруски хвойных пород, влажность которых должна быть в пределах 10 –14 %, сечением 40х40 мм различной длины. Укладывая бруски в различном количестве в горизонтальном слое и изменяя количество слоев, формируют 8 модельных очагов различного ранга от 1А до 20А, как показано в табл. 4.1.

Под штабель устанавливают квадратные поддоны из листовой стали. Их размеры соответст-вуют площади основания шта-беля, а высота равна 100 мм. В поддон заливают воду (высота слоя(30±3) мм), а затем бензин А-76 в количествах, указанных в табл. 4.1. По определенной методике, обусловленной НПБ 155-96, производят тушение подожженного штабеля (время свободного горения (7±1) мин без учета времени выгорания бензина). В процессе тушения фиксируют время подачи огнетушащего вещества и результат тушения. Очаг считает потушенным, если повторное воспламенение не произошло в течение 10 мин.

Таблица 4.1

Обозначение

модельного

очага Длина бруска,

±10 мм

Количество брусков в слое, шт. Количество слоев Количество бензина, л











10А

15А

20А 500

635

735

800

925

1100

1190

1270 6

7

8

9

10

12

15

17 12

16

18

20

23

27

30

33 1,1

2,0

2,8

3,4

4,8

7,0

7,6

8,2

Модельный очаг пожаров класса В представляет собой круглый противень, изготовленный из листовой стали, различного диаметра, высота стенки (230±5) мм. В противни заливают воду (высота слоя 602 мм), а затем бензин А-76 в количестве, указанном в табл. 4.2.

Таблица 4.2

Ранг очага пожара Площадь очага, м2 Количество бензина, л

13В

21В

34В

55В

89В

144В

233В

377В

610В 0,41

0,56

1,07

1,73

2,8

4,52

7,32

11,84

19,16 13

21

34

55

89

144

233

377

610

Из табл. 4.2 следует, что ранг очага определяется количеством бензина в литрах, заливаемого в противень.

В подожженное горючее после 60 с свободного горения подают огнетушащее вещество. В процессе тушения фиксируют время подачи огнетушащего вещества и результат тушения. Очаг пожара считается потушенным, если в течение 10 мин не произошло воспламенение.

Огнетушители на очагах пожаров всех рангов испытывают по три раза. Испытание выдерживают огнетушители, потушившие пожар в двух попытках.

Огнетушители, снаряженные различными огнетушащими веществами, идентичны по устройству. Они состоят из баллонов (корпусов) для огнетушащего вещества, с горловиной которых соединяются запорно-пусковые устройства. Каждое из них соединено с сифонной трубкой, не доходя до дна баллона на несколько миллиметров. С ней соединены детали, по которым огнетушащее вещество поступает к пистолету (или раструбам) для подачи в очаг горения.

4.2. Газовые огнетушители

Газовые огнетушители подразделяются на огнетушители углекислотные (ОУ) и хладоновые (ОХ).

В огнетушителях углекислотных огнетушащим веществом является диоксид углерода СО2. Им заполняют баллоны под давлением. При этом СО2 сжижается. Сжиженный СО2 называют углекислотой. Количество СО2 должно быть таким, чтобы при +50 оС давление в баллоне не превышало 15 МПа. При 20 оС оно равно 5,7 МПа.

Углекислота в баллоне занимает не весь его объем, а только часть. Другая часть приходится на углекислый газ, который под высоким давлением вытесняет углекислоту в очаг горения. Следовательно, ОУ являются закачными (З).

Рис. 4.2. Изменение давления СО2в огнетушителе в зависимости от температуры при различныхзначениях К

Рис. 4.3.Огнетушитель углекислотный ручной:

1 – баллон; 2 – трубка сифонная;3 – головка запорная; 4 – рычаг;5 – ручка; 6 – чека; 7 – трубкавыпускная; 8 – раструб

1

2

3

4

Этикетка

8

7

6

5

Р, МПа

t, оС

Соотношение между газовой и жидкой фазами характеризует наполнение баллона и определяется коэффициентом наполнения К. Коэффициент наполнения – это отношение количества углекислоты (в кг) к объему баллона (в л), в котором она находится. В среднем его величина равна 0,7.

В ОУ вытесняющий газ автоматически генерируется из углекислоты (рис. 4.2). Этим обусловлены особенности их конструкций.

ОУ производят в различном исполнении: переносные и передвижные.

Передвижные ОУ исполняют вместимостью до 80 л углекислоты. Их обозначение включает аббревиатуру ОУ (огнетушитель углекислотный) и цифру, обозначающую вместимость баллона в литрах.

ОУ переносного типа представлен на рис. 4.3.

Сифонная трубка 2 не доходит до дна на расстояние 3 – 4 мм и срезана под углом 30о. В огнетушителях ОУ-6 или ОУ-8 и др. вместо трубки 7 может использоваться бронированный шланг.

Запорная головка 3 предназначена для запирания углекислоты в баллоне, ее подачи в раструб 8 для тушения. Кроме того, в нем размещается предохранительная мембрана. При чрезмерном повышении давления СО2 в баллоне она разрушается, предохраняя разрыв баллона.

7

8

9

10

11

12

13

1

2

3

5

4

6

7

8

9

10

11

12

13

Рис. 4.4. Запорно-пусковое устройство ОУ:

1 – корпус; 2 – штуцер для соединения с раструбом; 3 – пружина; 4 – шайба; 5 – предохранительная мембрана; 6 – втулка поджимная; 7,8 – шайбы; 9 – штуцер (с сифонной трубкой) для соединения с баллоном; 10 – поршень;

11 – шток; 12 – рычаг; 13 – чека

Принципиальная схема запорной головки показана на рис. 4.4. В этом положении СО2 в газообразном состоянии заполняет камеру, где размещена пружина 3. В случае чрезмерного повышения давления в баллоне разрушится предохранительная мембрана 5 и огнетушитель разрядится. При необходимости подать углекислоту на тушение пожара следует вынуть чеку 13 и прижать рычаг 12 с кулачком к ручке огнетушителя. Кулачок переместит шток 11 и поршень 10, по его каналам углекислота поступит из баллона к штуцеру 9 в раструб (см. рис. 4.3).

Заполнение ОУ углекислотой производят, подавая ее в отверстие, в которое вставляется трубка 7 (рис. 4.3) при смещении поршня 10 (рис. 4.4) влево рычагом 12.

При вытеснении углекислоты из баллона и поступлении ее в раструб происходит ее расширение, сопровождающееся сильным охлаждением (до –70 оС). При этом углекислота превращается в хлопья «снега». При поверхностном тушении «снежным» диоксидом углерода его разбавляющее действие сопровождается охлаждением очага горения.

К числу недостатков ОУ следует отнести снижение эффективности выброса углекислоты в зону горения при низких температурах.

ОУ вместимостью баллонов 10 – 80 л называют передвижными (рис. 4.5). ОУ вместимостью 20 – 30 л комплектуют из ОУ-10, соответственно по 2 – 3 штуки. Они перемещаются на тележке (см. рис. 4.5). ОУ вместимостью 40 л перемещают на горизонтальной трехколесной тележке. ОУ вместимостью 80 л комплектуют из двух огнетушителей по 40 л.

Запорные головки передвижных огнетушителей идентичны рассмотренным раньше для переносных огнетушителей.

Некоторые ОУ при большой длине бронированного шланга до раструба (например, ОУ-20) оборудуются выпускным клапаном. Его устанавливают перед раструбом и рекомендуют применять при тушении пожаров классов А и В и особенно Е (электроустановок) напряжением до 1000 В.

Некоторые общие параметры технических характеристик ОУ приводятся в табл. 4.3.

Рис. 4.5. Передвижной ОУ-10:

1 – колесо с деталями крепления; 2 – скат в сборе; 3 – хомут верхний;

4 – чека; 5 – шланг; 6 – запорно-пусковое устройство; 7 – ручка;

8 – раструб; 9 – баллон дляуглекислоты

5

4

3

2

1

9

8

7

6

Все ОУ работоспособны в диапазоне температур от –20 до +60 оС.

В огнетушителях хладоновых огнетушащим веществом являются галоидоуглероды. Это соединения атомов углерода и водорода, в которых атомы водорода частично или полностью замещены атомами галоидов. К ним относятся атомы фтора F, брома Br, хлора Cl. Такие соединения условно называют хладонами.

Хладоны с низкой температурой кипения применяются в газообразном состоянии. Ими под давлением заполняют баллоны огнетушителей и используют для тушения так же, как углекислотные огнетушители.

Хладоны с температурой кипения выше 30 оС используются так же, как жидкие огнетушащие средства. Их распыляют из огнетушителей с помощью давления сжатого воздуха, азота или хладона с низкой температурой кипения.

Таблица 4.3

Огнетушители Вместимость баллона, л Масса заряда, кг Время выхода СО2, с Класс пожара и размер модельного очага Масса ОУ, кг

Переносные 1,5 – 8 1,05 – 5,6 8 – 12 10В – 55В 1,5 – 8

Передвижные 10 – 80 7 – 56 15 – 20 55В – 144В 30 – 139

Конструкция запорно-выпускных устройств аналогична используемым в ОУ.

Основным огнетушащим действием хладонов является ингибирующий (тормозящий) эффект. В очаге пожара хладоны разлагаются, образующиеся при этом продукты оказывают тормозящее действие на процесс горения.

ОХ рекомендуется применять для тушения пожаров класса А, В, С и электроустановок.

Некоторые параметры, характеризующие их применение, приведены в табл. 4.4.

Таблица 4.4

Масса в огнету-шителе, кг Минимальный ранг очагов пожара Минимальные

А В дальность струи, м продолжи-тельность подачи, с

≤1

>1≤2

>2≤4

>4≤6

>6 -

-

-



2А, 3А 13В

21В

34В

55В

89В 3

3

3

3

3 3

3

3

3

4

Преимуществами хладонов является то, что при тушении пожаров они полностью испаряются. Вследствие низкой температуры кипения хладоны имеют высокую морозоустойчивость. Это позволяет использовать их при низких температурах.

Хладоны токсичны, поэтому их опасно применять для тушения пожаров в тесных, плохо проветриваемых помещениях.

Хладоны не могут применяться для тушения в подвалах, шахтах, для тушения пожаров, сопровождающихся тлением, так как создается опасность образования токсичных продуктов пиролиза. Нельзя их применять для тушения пожаров легких металлов (Mg, Na, Al и др.), так как при взаимодействии с ними может произойти взрыв.

4.3. Порошковые огнетушители

В огнетушителях порошковых (ОП) огнетушащим веществом являются порошковые составы. Механизм тушения порошковыми составами обусловлен рядом факторов. Он основан на разбавлении горючей среды газообразными продуктами разложения порошка, охлаждении зон горения. Важную роль играет возникновение эффекта огнепреградителя, обусловленного прохождением пламени между частицами в струе порошка. Имеет значение также ингибирование химических реакций в пламени.

Коэффициент наполнения ОП изменяется в пределах 0,8 – 0,9.

Порошковые огнетушители являются универсальным средством пожаротушения и предназначены для тушения пожаров классов А,В,С и электроустановок (под напряжением до 1000 В). Они используются для защиты от пожаров жилых помещений, общественных и промышленных сооружений, транспорта и других объектов.

К числу недостатков ОП относятся слеживание порошка, а также снижение давления газа в закачных огнетушителях.

Рис.4.6. Порошковый огнетушитель закачной:

1 – баллон; 2 – шланг; 3 – кронштейн;4 – кольцо; 5 – запорно-пусковая головка; 6 – рычаг; 7 – ручка; 8 – индикатордавления; 9 –манометр; 10– кронштейнтранспортный; 11 – этикетка

14

24

34

44

54

64

74

84

94

104

114

Рис. 4.7. Запорно-пусковая головказакачного ОП:

1 – сифон; 2 – ниппель; 3 – корпусогнетушителя; 4 – пружина; 5 – корпус головки; 6 – клапан; 7 – чека; 8 – рычаг;9 – индикатор давления

1

2

3

4

5

6

7

8

9

Для пожаротушения применяют переносные и передвижные ОП. По способу вытеснения порошка из огнетушителя их классифицируют на закачные (З), баллончиковые (Б) и газогенераторные (Г). В переносных ОП применяются все три способа вытеснения порошка, а в передвижных – используется только закачка вытесняющего газа.

8

Закачной переносной ОП представлен на рис. 4.6. Запорно-пусковая головка 5, как и в ОУ, предназначена запирать баллон ОП от произвольного выхода из него вытесняющего газа и открывать каналы для выхода из огнетушителя тушащего порошка.

Принципиальная схема за-порно-пускового устройства за-качных ОП представлена на рис. 4.7. В исходном положении давление закачанного в ОП газа измеряется индикатором 9. Величина утечки для закачных огнетушителей не должна превышать 10 % в год от рабочего давления. Для подачи порошка на тушение необходимо вытащить чеку 7 и нажать на рычаг 8. Кулачок надавит на клапан 6 и переместит его вниз. При этом сожмется пружина 4 и порошок по сифонной трубке поступит в камеру пружины 4 и по каналу в корпус 5 на тушение. Если отпустить рычаг 8, то пружина 4 прижмет клапан к его седлу и подача порошка прекратится.

Передвижные ОП имеют две конструктивные особенности. Они вмещают 50 или 85 кг порошка, поэтому устанавливаются на двух-колесной тележке. Кроме того, для заполнения вытесняющим газом баллона огнетушителя в его крышке закреплен специальный зарядник. Он представляет собой обратный клапан с пружиной, смонтированной в штуцере, закрываемом крышкой с резьбой.

Рис. 4.8. Баллончик в сборе:

1 – баллончик; 2 – мембрана; 3 – ниппель; 4 – корпус запорно-пусковой головки; 5 – рычаг; 6 – игла; 7 – пружина

2

1

3

4

5

6

7

ОП с баллончиком сжатого газа (Б). Эти огнетушители в отличие от ОП (З) имеют в запорно-пусковой головке встроенный баллончик с газом, сжатым до 15 МПа (рис. 4.8). При нажатии на рычаг 5 игла 6 проколет мембрану 2 и газ баллончика поступит в корпус огнетушителя по каналам в ниппеле 3. Сжатый газ будет поступать также и в сифонную трубку, взрыхляя порошок, заставляя вытесняться его в шланг, а затем в ствол. В месте соединения сифонной трубки со шлангом установлена защитная мембрана из полиэтиленовой пленки. Она разрушается под давлением 0,3 – 0,4 МПа и предотвращает попадание влаги вовнутрь огнетушителя.

Ствол ОП позволяет выпус-кать порошок весь сразу или по частям. Для этого необходимо периодически отпускать рукоятку, пружина которой закроет ствол.

Для пожаротушения приме-няют переносные и передвижные ОП. Их обозначение включает аббревиатуру и цифры. Цифры приближенно означают количество порошка (в кг). Например, ОП-2(З) или ОП-5(Б). В первом случае огнетушитель порошковый закачной (З), во втором – с баллончиком (Б).

Некоторые параметры технических характеристик ОП представлены в табл. 4.5.

Таблица 4.5

Огнету-шители Количество порошка, кг Класс пожара и размермодельного очага Времяподачипорошка, с Длина выброса, м Масса ОП

Перенос-ные

Передвиж-ные

0,85 – 12

42,5 – 85 1А, 13В – 4А, 144В

6А,23В – 10А, 233В 5 – 30

25 – 45 3 – 5

6 2,5 – 20,5

100 – 200

Передвижные ОП устанавливают на тележках. Все ОП работоспособны при температурах воздуха от –40 до +50 оС.

Рис. 4.9. Огнетушительпорошковый газогенераторный:

1 – баллон; 2 – этикетка;3 – ручка; 4 – головка в сборе;5 – трубка сифонная; 6 – шланг;7 – пистолет

1

2

3

4

5

6

7

Рис. 4.10. Головка запорная:

1 – газогенератор; 2 – корпусголовки; 3 – чека; 4 – грибок; 5 – боек

1

2

3

4

5

Огнетушители порошковые с газогенерирующими устройствами. В этих огнетушителях используются газогенерирующие устройства (ГГУ), которые создают рабочее давление в корпусах огнетушителей и вытесняют огнетушащий порошок, предназначенный для тушения очага горения. Их производят в двух вариантах. Огнетушители порошковые – ОП(Г) и модули порошкового пожаротушения (МПП).

Огнетушители ОП(Г). Они отличаются от огнетушителей ОП наличием газогенерирующего устройства, устанавливаемого внутри корпуса. Они имеют ряд достоинств. Давление в корпусе огнетушителя отсутствует, поэтому они более надежны в работе и безопасны при хранении. Их масса при одинаковой вместимости меньше, чем у ОП с другим способом вытеснения огнетушащего вещества. Важна также простота перезарядки, так как не требуется компрессорное оборудование.

Особенностями конструкции ОП(Г) является (рис. 4.9) то, что запорная головка 4 в сборе и трубка сифонная 5 выполнены и установлены раздельно. Поэтому управление выпуском порошка осуществляется только пистолетом 7.

Принципиальная схема головки ОП(Г) представлена на рис. 4.10. В корпус головки 2 ввинчивается генератор 1.Головка, в свою очередь, ввинчивается в крышку корпуса огнетушителя. Приведение огнетушителя в рабочее состояние производится в следующей последовательности: вынимают чеку 3 и ударяют по грибку 4, боек 5, ударяя о пистон, приводит в действие газогенератор 1. Выделяющийся газ и будет вытеснять порошок из баллона огнетушителя. Рабочее давление в баллонах не превышает 1,2 МПа.

Некоторые параметры технических характеристик ОП (Г) приведены в табл. 4.6.

Таблица 4.6

Огнетушители Количество порошка, кг Класс пожара и размер модельного очага Время подачи порошка, с Длина выброса, м Масса ОП, кг

ОП-2 (Г)

ОП-5 (Г)

ОП-10 (Г) 1,5 л

4

9 -

2А, 55В

4А, 144В 8

6

10 4

3,5

4,5 4

8,2

13

ОП (Г) работоспособны в диапазоне температур окружающей среды от –20 до + 60 оС.

Модуль порошкового пожаротушения. Это огнетушители стационарные, импульсные, одноразового действия с частично разрушающимся элементом конструкции.

Рис. 4.11. Модуль порошковогопожаротушения «Буран-2,5»:

а – общий вид; 1 – мембрана; 2 – кольцо; 3 – корпус; 5 – фрагмент крепления к потолку; б – фрагмент МПП; 4 – стакан; 6 – электроактиватор; 7 – газообразователь; 8 – трубка; 9 – огнепроводный шнур; 10 – колпачок; 11 – термопорошок;

12 – лента ПХВ

1

2

3

5

3

4

5

6

7

8

9

10

11

121

11

а

Общий вид одного из вариантов конструкции МПП «Буран-2,5» представлен на рис. 4.11. Он состоит из двух сферообразных металлических частей: мембраны 1 и корпуса 3, соединенных кольцом 2. Корпус 3 изготовлен из листа стали. Ст20 или Ст3 толщиной 1,2 мм. Для изготовления мембраны 1 при-меняется лист из алюминия АМ5 или АМ6 толщиной 0,5 – 0,6 мм. На внешней ее поверхности из центра к периферии под углом 120о фрезерованы три канавки. Их глубина равна 0,1 мм, а ширина (0,5±0,1) мм. Эти канавки облегчают разрушение мембраны при срабатывании модуля.

б

Мембрана 1 и корпус 3 соединены кольцом 2. На корпусе 3 имеется приспособление 5 для креп-ления модуля к потолку защищаемого помещения.

Пространство, ограниченное мембраной и корпусом, предназначено для хранения огнетушащего порошка, газообразователя, электрического активатора и самосра-батывающего устройства. Общая схема компоновки модуля описанных устройств показана на рис. 4.11, б.

В стакане 4 установлен спрессованный газообразователь 7, опоясанный огнепроводным шнуром 9, который в изоляционной трубке 8 подводится к колпачку 10, заполненному термопорошком 11. Шнур 9 в верхней части присоединен к электроактиватору 6.

При воздействии на мембрану 1 тепла или пламени, уже при нагреве ее до (85±5) оС, самовоспламеняется порошок 11 в колпачке 10. Тепло, распространяясь по горящему шнуру, подводится к газообразователю 7. При его горении выделяется большое количество газов. Этот газ через отверстия в стакане 4 поступает внутрь модуля, повышая в нем давление. При достижении расчетного давления (0,4 – 1,2 МПа для различных модулей) мембрана 1 разрывается по сделанным на ней канавкам, и огнетушащий порошок выбрасывается на очаг горения. Так как мембрана изготовлена из мягкого алюминия, то какие-либо твердые частицы не образуются.

Электропуск модуля осуществляется импульсом тока 100 мА продолжительностью не менее 0,1 с при напряжении на контактах модуля не менее 6В.

МПП производятся в виде цилиндров с плоскими мембранами на их основании. Все они рекомендуются для тушения пожаров класса А и В и электроустановок под напряжением до 5000 В. Однако большинство из них включаются в работу только от электросети и рекомендуются в основном для комплектования автоматических установок пожаротушения.

Некоторые параметры технических характеристик ряда МПП приводятся в табл. 4.7.

Таблица 4.7

Наименование показателя Размер-ность Модели МПП

«Буран-0,5» «Буран-2,5» «Буран 2,5В»* «Буран-8»**

Масса модуля кг 1,6 2,9 3,6 12,0

Масса порошка кг 0,48 1,95 1,95 7,0

Габаритные размеры:

диаметр

длина мм

мм 100

210 250

140 250

170 250

350

Огнетушащая способность:

пожары класса А

пожары класса В м3

м2

м3

м2 2

-

2

- 18

-

16

- 18

-

16

- 64

32

42

21

Максимальный ранг пожа-ра класса В - 13В 34В 34В 233В

* Рекомендуется применять во взрывоопасных зонах помещений.

** В зависимости от высоты крепления на потолке или на стене используются другие модификации.

Пример обозначения МПП. МПП(Р) – 0,5-И-ГЭ УХР кат.3,1-ТУ (номер) Р – с разрушающимся элементом; 0,5 – объем (в л) импульсного действия; ГЭ – с газогенерирующим элементом; климатическое исполнение, категория и номер ТУ.

МПП не требуют специального технического обслуживания. Следует только периодически очищать их корпуса от пыли и грязи, протирая их влажной тряпкой. Один раз в 1 – 3 месяца (в зависимости от типа модуля) проверяется корпус модуля для обнаружения вмятин и повреждений. При наличии указанных дефектов корпуса меняют.

Проверка качества огнетушащего порошка производится один раз в пять лет. Модули работоспособны при температуре окружающего воздуха от –50 до +50 оС.

4.4. Огнетушители воздушно-пенные

В огнетушителях воздушно-пенных (ОВП) огнетушащим веществом являются водные растворы пенообразователей. Образование пены осуществляется в пеногенераторах, входящих в комплектацию огнетушителей.

Все виды пен, применяемые в практике пожаротушения, условно относятся к категории изолирующих огнетушащих средств. Следовательно, они действуют по механизму изоляции горючего вещества от зоны горения. Вместе с тем, особенно при тушении твердых материалов, большое значение может иметь также охлаждающее действие пен.

Особенности конструкции пеногенераторов и концентрации пенообразователя в огнетушителе определяют возможность тушения пожаров пеной низкой (Н) или средней (С) кратности.

В зависимости от массы огнетушащего вещества ОВП могут быть закачными (З) или баллончиковыми (Б).

В ОВП подача огнетушащих веществ осуществляется по принципам, описанным раньше для порошковых огнетушителей. Регулирование подачи раствора пенообразователя в передвижных огнетушителях осуществляется шаровым муфтовым краном. Он размещается на рукаве перед пеногенератором. В закачных ОВП заполнение баллона вытесняющим газом осуществляется так же, как и в ОП, через специальный зарядник.

Некоторые параметры характеристик ОВП представлены в табл.4.8.

ОВП заряжены водными растворами пенообразователей, поэтому область их применения ограничивается интервалом температур окружающей среды от +5 до +60 оС.

Таблица 4.8

Огнетушители Количество огнетушащего вещества, кг Огнетушащая способность Рабочее давление, МПа Время подачи, с Длина выброса, м Масса, кг

ОВП(Н,С) – 5(З)

ОВП(Н,С) – 10(З)

ОВП(Н,С) – 50(З)

ОВП(Н,С) –100(З)

ОВП(Н,С –100(Б) 4,5

9

42,5

85

85 1А,34В

2А,55В

4А,144В

6А,233В

6А,233В 1,6

1,6

1,2

1,2

1,2 30

40

40

60

60 3

3,5

6

6

6 7,2

14

95

165

180

Огнетушители водяные (ОВ). Огнетушащим веществом в ОВ является вода или вода с пенообразующими добавлениями. По принципу вытеснения огнетушащего вещества они относятся к огнетушителям с баллончиком сжатого газа (Б). По значению рабочего давления их относят к огнетушителям низкого давления (до 2,5 МПа). Они перезаряжаются.

Особенности конструкций запорно-распределительных устройств и насадков, формирующих выходящую струю, заключаются в том, что вода из ОВ может подаваться компактной струей (К), распыленной (Р) и мелкодисперсной (М) – диаметр капель меньше 100 мкм.

ОВ можно применять для тушения пожаров класса А и В.

ОВ запрещается применять для ликвидации пожаров под электрическим напряжением, для тушения сильно нагретых или расплавленных веществ. Запрещается также тушить вещества, вступающие в химическую реакцию, которая может сопровождаться интенсивным выделением тепла и разбрызгиванием продуктов реакции.

В настоящее время специалисты НПО Пульс разработали ОВ, обеспе-чивающие подачу воды с пенообразующими добавками на расстояние до3 м. ОВ приводится в действие в течение 5 с и работоспособен при темпе-ратурах окружающей среды от +5 до +50 оС. Некоторые параметры техни-ческих характеристик ОВ представлены в табл. 4.9.

Таблица 4.9

Наименование показателей технической характеристики Размер-

ность Огнетушители

ОВ-6(Б) ОВ-10(Б)

Вместимость корпуса дм3 6 10

Объем огнетушащего вещества дм3 5 8,6

Огнетушащая способность модельного очага – 1А

34В 2А

55В

Рабочее давление в корпусе МПа 1,0 1,2

Продолжительность подачи огнетушащего вещества с 30 40

Масса огнетушителя кг 9,5 15

4.5. Огнетушители аэрозольные

В огнетушителях аэрозольных (ОА) в качестве огнетушащего аэрозоля используются аэрозолеобразующие огнетушащие составы. Они представляют собою твердотопливные или пиротехнические композиции. Их особенность в том, что они способны гореть без доступа воздуха. Образующиеся при горении газы состоят из высокодисперсных частиц, солей и окислов щелочных металлов, обладающих высокой огнетушащей способностью по отношению к углеводородному пламени.

Механизм действия огнетушащего аэрозоля во многом аналогичен механизму действия огнетушащих порошков на основе щелочных металлов. Более высокая его эффективность обусловлена большей дисперсностью частиц и некоторым снижением концентрации кислорода в защищаемом помещении.

Тушение аэрозолями осуществляется объемным способом и рекомендуется применять при пожарах подкласса А2 и класса В в помещениях с воздушной средой, при атмосферном давлении и имеющих негерметичность помещения до 0,5 %. Применяются также для тушения электроустановок под напряжением до 1000 В.

Преимущественная область применения – моторные и багажные отсеки автомобилей; помещения с наличием легковоспламеняющихся веществ (в том числе ЛВЖ и ГЖ), горючих газов; электрические установки; хранилища материальных ценностей.

Применение ОА не эффективно для материалов, горение которых происходит в тлеющем режиме или способных гореть без доступа воздуха, порошков металлов.

Запрещается их применение в помещениях, которые не могут быть покинуты людьми до начала работы ОА.

ОА – это генераторы огнетушащего аэрозоля (ГОА) с заданными параметрами подачи аэрозоля в защищаемое помещение.

Некоторые параметры технической характеристики ОА типа «Допинг» (ООО ЭПОТОС-1) приводятся в табл. 4.10.

Таблица 4.10

Показатели характеристик Размерность Величина

Объем защищаемого объекта м3 2

Масса аэрозолеобразующего вещества кг 0,24

Масса охладителя кг 0,27

Продолжительность работы с Не более 20

Время запуска с Не более 2

Габаритные размеры:

диаметр

высота мм

мм 60

160

Масса кг 1,5±0,2

ГОА состоит из корпуса (рис. 4.12) с одним или несколькими отверстиями, содержащего заряд аэрозолеобразующего состава. Порошок охладителя обеспечивает снижение температуры аэрозоля и средства его ини-циирования.

Рис. 4.12. Генератор огнетушащего аэрозоля:

1 – кронштейн; 2 – винт; 3 – гайки; 4 – провода для подключения к источнику тока; 5 – термочувствительный шнур

1

2

5

1

4

3

2

90

90

60

160

Рис. 4.13. Схема подключения ГОАк источнику питания:

1 – ГОА; 2 – аккумуляторная батарея; 3 – любой потребитель; 4 – включатель; 5 – разъем; 6 – электронагреватель

5

6

1

2

3

4

Закрепление огнетушителя параллельно стенке объекта или под углом к ней (на рисунке показано пунктиром). Отверстие для истечения аэрозоля с термочувствительным шнуром следует направлять на вероятное место возникновения загорания.

Огнетушитель запускается от источника тока напряжением 12 – 36 В в течение не более 2 с при величине тока 1,5 – 2 А. Запуск возможен от воздействия на термочувствительный (огнепроводной) шнур открытого пламени или от нагрева до температуры свыше 200 оС.

Работа ОА сопровождается характерным шипящим звуком. При этом выделяется аэрозоль в виде серо-голубого тумана. После срабатывания ОА и тушения пожара не рекомендуется открывать защищаемый объем не менее 3 минут для предупреждения повторного возгорания. Продукты тушения и пожара удаляются простым проветриваниеми протиркой влажной ветошью.

Пример подключения ОА к электропитанию показан на рис. 4.13. При включении выключателя 4 от аккумуляторной батареи 2 так поступит к электронагревателю 6. Гидрогенератор сработает и аэрозоль потушит начавшееся загорание.

4.6. Выбор, размещение и техническое обслуживание огнетушителей

Выбор типа и ранга огнетушителей, необходимых для защиты конкретного объекта, устанавливают на основании оценки класса пожара, который может в нем возникнуть. Эффективность их применения зависит как от заряженного огнетушащего вещества, так и в ряде случаев от характеристик образующихся струй.

Огнетушители рекомендуется применять в соответствии с требованиями НПБ 166-97, приведенными в табл. 4.11.

Таблица 4.11

Класс пожара Огнетушители

водные воздушно-пенные порошковые углекислотные хладоновые

Р М Н С А +++ ++ ++ + ++2) + +

В – + +1) ++1) +++ + ++

С – – – – +++ – +

D – – – – +++3) – –

Е – – – – ++ +++4) ++

1) Использование растворов фторированных пленкообразующих пенообразователей повышает эффективность пенных огнетушителей (при тушении пожаров класса В) на одну-две ступени.

2) Для огнетушителей, заряженных порошком, тушащим пожары класса А,В,С,Е.

3) Для огнетушителей, заряженных специальным порошком и оснащенных успокоителем порошковой струи.

4) Кроме огнетушителей, оснащенных металлическим диффузором для подачи углекислоты на очаг пожара.

Знаком +++ отмечены огнетушители, наиболее эффективные при тушении пожара данного класса; ++ огнетушители, пригодные для тушения пожара данного класса; + огнетушители, недостаточно эффективные при тушении пожара данного класса;– огнетушители, непригодные для тушения пожара данного класса.

Если на объекте возможны комбинированные очаги пожара, то предпочтение при выборе огнетушителя должно отдаваться более универсальному огнетушителю (из рекомендованных для защиты данного объекта), имеющему более высокий ранг.

Основные показатели огнетушителей отражаются в структуре их обозначений, приводимой ниже.

,

ХХ(Х) – ХХ(Х) – ХХА; ХХВ; С – (Х) ХХ Х

1 2 3 4 5 6 7 8

где 1 – тип огнетушителя по виду огнетушащего вещества (ОВ, ОВП, ОП, ОУ, ОХ); 2 – кратность пены (Н, С), вид струи: компактная (К); распыленная (Р), мелкодисперсная (М); 3 – вместимость корпуса, л; 4 – принцип вытеснения ОТВ (з, б, г, ж, т); 5 – ранг очага, класс пожара; 6 – модель (01, 02 и т.д.); 7 – климатическое исполнение (У1, Т2 и т.д.); 8 – обозначение нормативного документа (ГОСТ, ТУ).

В мелкодисперсных струях средний диаметр капли меньше 100 мкм.

Пример условного обозначения:

ОВП(Н)-10(г)-2А; 55В-(01)У2 ГОСТ…

Огнетушитель воздушно-пенный (ОВП), низкой кратности (Н), вместимостью корпуса 10 л, вытеснение огнетушащего вещества газогенерирующим элементом (г), для тушения загорания твердых горючих материалов (ранг очага 2А) и жидких горючих веществ (ранг очага 55В), модель 01, климатическое исполнение У2, ГОСТ Р…

ОП-5(з)-3А; 89В; С-(01) Т2 ГОСТ Р…

Огнетушитель порошковый (ОП), вместимостью корпуса 5 л, закачной (з), для тушения загораний пожаров твердых горючих материалов (ранг очага 3А), жидких горючих веществ (ранг очага 89В) и газа (С), модель 01, климатическое исполнение Т2, ГОСТ Р…

Обеспечение эффективного применения огнетушителей обусловлено рациональным их размещением на охраняемом объекте и поддержанием его работоспособности, т.е. периодическим контролем его технического состояния и обслуживания.

Размещение огнетушителей должно осуществляться так, чтобы они наиболее эффективно использовались как первичные средства пожаротушения. Реализация этого принципа обусловлена выполнением ряда простых требований в соответствии с ГОСТ 12.4.009.

Во-первых, огнетушители следует размещать вблизи мест наиболее вероятных возникновений пожаров вдоль проходов и на выходе из помещений. От возможных мест пожаров огнетушители размещают на различных расстояниях в зависимости от категорий помещений. Так, для общественных зданий и сооружений они должны быть не более 2 кг для помещений категорий А,Б,В до 30 кг и т.д.

Они могут крепиться на кронштейнах или в специальных шкафах.

Огнетушители массой до 15 кг должны устанавливаться так, чтобы их верх был на высоте не более 1,5 м от пола, а более тяжелые – не выше 1 м. Они могут устанавливаться и на полу с обязательной фиксацией от возможного падения при случайном воздействии.

Во-вторых, при размещении огнетушителей должно быть исключено влияние на них факторов, снижающих их надежность (солнечные лучи, тепловые потоки, механические воздействия).

В-третьих, они должны располагаться так, чтобы все надписи и пиктограммы были хорошо видны и доступ к ним был свободным. Указатели о размещении огнетушителей следует располагать на видных местах на высоте 2,0 – 2,5 м от уровня пола.

Техническое обслуживание огнетушителей должно обеспечивать поддержание их в постоянной готовности к использованию и надежной работе всех узлов на протяжении всего срока эксплуатации. Это обеспечивается четкой регламентацией их обслуживания.

Контроль технического состояния огнетушителей и их обслуживание осуществляется специально подготовленными лицами, назначенными приказом по предприятию или учреждению.

Проверка первоначальная осуществляется перед введением огнетушителя в эксплуатацию. При этом производится внешний осмотр и комплектность огнетушителя, состояние места его установки, возможность свободного доступа к нему. На деталях огнетушителей не должно быть механических повреждений, индикаторы или манометры должны быть исправными.

Ежеквартальная проверка включает осмотр места установки огнетушителей, подхода к ним и внешнего осмотра.

Ежегодная проверка производится в объеме ежеквартальной проверки и дополнительно контролирует величину утечки вытесняющего газа из газового баллона или из газового огнетушителя. Производят также вскрытие огнетушителей (полное или выборочное), проверку состояния фильтров, параметров огнетушащих веществ. Если они не будут соответствовать требованиям нормативных документов, необходимо перезарядить огнетушители.

Не реже одного раза в пять лет каждый огнетушитель и баллон с вытесняющим газом разряжают, полностью очищают корпус огнетушителя от остатков ОТВ, проводят гидравлическое его испытание на прочность и пневматическое испытание на герметичность корпуса огнетушителя, пусковой головки, шланга и запорного устройства.

Обобщенные требования по проверке и перезарядке огнетушителей приведены в табл. 4.12.

Таблица 4.12

Вид используемого ОТВ Срок (не реже)

проверки параметров ОТВ перезарядки огнетушителя

Вода (вода с добавками) Раз в год Раз в год

Пена* Раз в год Раз в год

Порошок Раз в год

(выборочно) Раз в 5 лет

Углекислота

(диоксид углерода) Взвешиванием

раз в год Раз в 5 лет

Хладон Взвешиванием

раз в год Раз в 5 лет

*Огнетушители с многокомпонентным стабилизированным зарядом на основе углеводородного пенообразователя должны перезаряжаться не реже одного раза в 2 года.

Воздушно-пенные огнетушители, внутренняя поверхность корпуса которых защищена полимерным или эпоксидным покрытием, или корпус огнетушителя изготовлен из нержавеющей стали, или фторсодержащий пенообразователь находится в концентрированном виде в отдельной емкости и смешивается с водой только в момент применения огнетушителей, должны проверяться с периодичностью, рекомендованной фирмой-изготовителем огнетушителей.

Перезаряжаться такие огнетушители должны не реже одного раза в 5 лет.

Порошковые огнетушители, используемые для защиты транспортных средств, должны обязательно проверяться в полном объеме с интервалом не реже одного раза в 12 месяцев.

Порошковые огнетушители, установленные на транспортных средствах вне кабины или салона и подвергающиеся воздействию неблагоприятных климатических и (или) физических факторов, должны перезаряжаться не реже одного раза в год, остальные огнетушители, установленные на транспортных средствах, – не реже одного раза в два года.

О проведенных проверках и испытаниях делаются отметки на огнетушителе, в его паспорте и в журнале учета огнетушителей.

Раздел 2

ОСНОВНЫЕ ЭЛЕМЕНТЫ КОНСТРУКЦИЙ ПОЖАРНЫХ АВТОМОБИЛЕЙ

Глава 5

БАЗОВЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА ПА

Пожарные машины разработаны и выпускаются промышленностью на шасси грузовых автомобилей. На каждый вид ПА предъявляются требования к шасси грузовых автомобилей, на которых они будут обустроены. При этом учитывается развиваемая двигателем мощность, колесная формула, устойчивость автомобиля, его грузоподъемность. Это первая группа требований. Вторую их группу составляют требования к пожарной надстройке, которые необходимо обосновать, исходя из условий и особенностей применения ПА.

5.1. Общие требования к ПА

Рис. 5.1. Виды пожаров:

1 – без начальной стадии развития;2 – с начальной стадией развития

200

300

t,оС

1

2

10

T,мин

Область применения пожарных автоцистерн определяется условиями развития пожаров, которые можно разделить на два вида. Первый вид пожаров – без начальной стадии развития – характеризуется кривой 1 на рис. 5.1. На объектах, в которых температура при возникновении пожара может нарастать подобным образом, рекомендуется внедрять автоматические установки пожаротушения.

Вторую группу составляют такие пожары, в которых имеется начальная стадия развития пожара, как показано кривой 2. В этих случаях рекомендуется использовать пожарные автоцистерны.

Начальный период пожара сопровождается повышением температуры до 200 – 300 оС, при которой начинается термическое разложение многих материалов и их возгорание. Этот период обычно длится 10 – 12 мин, после чего, естественно, интенсивно увеличивается температура. С ее увеличением будет возрастать и ущерб, наносимый пожаром. Поэтому, чем раньше поступит сообщение о пожаре и будет начато его тушение, тем меньше будет ущерб, наносимый им.

Таким образом, важнейшим требованием к пожарным автомобилям любого назначения является готовность их к выезду и следованию на пожар с минимальными затратами времени.

Рис. 5.2. Распределение выездов пожарных подразделений в городе с населением 300 – 400 тыс.человек:

1 – действительное распределение;

2 – теоретическое распределение

1

2

N

100

1

2

3

4

5

6

7

8

К

Частота использования пожарных автомобилей устанавливается по выездам пожарных автомобилей на пожары. В течение суток пожарные автомобили могут не вызываться на пожары или вызываются несколько раз (рис. 5.2).

50

Потоки выездов ПА на пожары описываются распределением Пуассона. В соответствии с этим вероятность Р(τ) того, что в любой промежуток времени произойдет К выездов ПА, равна:

(5.1)

где λ – среднее число выездов в единицу времени; τ – любой промежуток времени; e – основание натуральных логарифмов, 2,72; К = 1,2,3… К – число выездов. Для приведенного распределения на рис. 5.2 в течение 33 суток в году не было ни одного выезда, 78 раз было по одному выезду и т.д. Таким образом, ПА должны быть приспособлены к использованию в любые случайные промежутки времени суток. Это требует содержания их в постоянной боевой готовности, что осуществляется как конструкцией ПА, так и организацией их содержания.

Рис. 5.3. Временные характеристики пожаротушения

зан

туш

в

пр

н.т

л

воз

гот

Особенности использования ПА определяются характером боевых действий, проводимых при тушении пожаров. В общем виде последовательность их реализации можно представить в виде временной характеристики пожаротушения (рис. 5.3).

Боевые действия – выезд и следование на пожар осуществляются в период после обработки вызова от начала выезда в до прибытия в район вызова пр. В период от пр до начала тушения н.т производится боевое развертывание. Ликвидация горения осуществляется в период от н.т до ликвидации горения л.

После ликвидации горения осуществляется сбор и возвращение воз ПА в пожарную часть. В период воз – гот производится обслуживание ПА и размещение его на стоянку в парк в готовности к следующему вызову. Период времени в – гот характеризует продолжительность занятости пожарного автомобиля.

В период пр –нт и тушения могут производиться ряд боевых действий: разведка пожара, спасание людей или материальных ценностей, вскрытие конструкций и др. В этот период боевых действий могут использоваться специальные ПА, различное ПТВ. Порядок боевых действий и содержание работ в них регламентируются БУПО.

Из анализа временной характеристики пожаротушения следует, что минимизация одного какого-либо боевого действия не приведет к существенному сокращению времени занятости ПА. Необходимо, чтобы ПА был готов к проведению любых боевых действий с минимальными затратами времени.

Общие требования к ПА сводятся к ряду положений.

Пожарная надстройка ПА не должна снижать технических возможностей базовых шасси. Все ПА должны быть приспособлены для тушения пожаров, т.е. для работы на открытом воздухе в любой климатической зоне страны. ПА необходимо содержать в гаражах пожарных частей при температуре воздуха не ниже +12 оС.

Размещение агрегатов, ПТВ и систем на базовом шасси должно быть таким, чтобы их приведение в действие требовало малых затрат времени. При этом должны обеспечиваться как безопасное ведение боевых действий, так и обслуживание ПА и его ремонт.

В целях охраны окружающей среды должно быть исключено вытекание технических жидкостей (топливо, охлаждающие и тормозные жидкости, а также смазочные масла, пенообразователь) из емкостей агрегатов и механизмов. Дымность и содержание оксида углерода в отработавших газах двигателей ПА не должны превышать их значений в двигателях на базовых шасси.

Сооружаемая на АЦ пожарная надстройка должна быть приспособлена к человеку. Кабины-салоны для личного состава и рабочие места операторов должны соответствовать требованиям эргономики по удобству размещения, доступности по использованию и обеспечивать управление агрегатами с минимальными усилиями.

Требования к ПА общего и целевого применения, а также к специальным ПА имеют свои особенности. Поэтому, кроме общих требований, необходимо учитывать и специфические требования. Для этих типов ПА они будут сформулированы дополнительно.

5.2. Требования к ПА общего применения

Эти требования должны быть сформулированы на основании особенностей применения ПА. Они должны предъявляться как к конструкции АЦ, так и к условиям организации их содержания в пожарных частях.

Следование на пожар определяется по среднестатистическим данным. Так, за период 1994 – 1999 гг. получены следующие результаты, приводимые в табл.5.1.

Таблица 5.1

Показатель Продолжительность, мин

По всем пожарам

В городах

В сельской местности

Крупные пожары 11 – 12

8 – 8,5

18,5 – 19,5

12 – 13

Представление о продолжительности следования на пожары можно получить по данным рис. 5.4. Из рисунка следует, что в 33 – 47 % всех случаев продолжительность следования на пожар не превышает 5 мин, а до70 % – 10 мин. Следовательно, в большинстве случаев автоцистерны прибывают на пожар в первый период его развития (см. рис. 5.1).

Продолжительность следования АЦ на пожар зависит, прежде всего, от ее удельной мощности, кВт/т, т.е. от отношения номинальной мощности двигателя к массе:

Nуд = , (5.2)

где ном – номинальная мощность двигателя, кВт; G – масса АЦ, т.

Рис. 5.4. Распределение продолжитель-ности следования на пожар:

1 – 1994 г.; 2 – 1998 г.

50

40

30

20

10

10

20

30

,мин

n,%

1

2

1994

1998

Для АЦ значение удельной мощности должно быть более 11 кВт/т. Наряду с этим требуется, чтобы полная масса АЦ не превышала 95 % величины массы базового шасси.

Реализация Nуд зависит от интенсивности дорожного движения, дорожных условий и теплового состояния двигателя. Дорожные условия характеризуются коэффициентом сцепления колеса с дорожным покрытием и величиной коэффициента f сопротивления движению колес.

Суммарная тяговая сила Рк наколесах АЦ, которую обеспечиваетдвигатель, реализуется при условии

к ψ, (5.3)

где – сила сцепления шины колеса с дорожным покрытием, Н; ψ – суммарная сила сопротивления качению колес, Н.

В зависимости от характеристики дорог и их дорожного покрытия силы и ψ изменяются в очень широких пределах. Поэтому для уменьшения времени следования на пожар необходимо не только правильно выбрать базу для АЦ, но и выбрать наиболее рациональный маршрут следования на пожар.

Мощность, развиваемая двигателем внутреннего сгорания, во многом зависит от температуры охлаждающей жидкости в системе его охлаждения. Наиболее эффективно они работают при нагреве ее до tохл, оС, равной 80 – 90 оС. Однако уже при tохл = 50 – 66 оС, двигатель развивает мощность, близкую к максимальной. При длительной стоянке в гаражах, особенно зимой, tохл = 16 оС. Поэтому при движении по одной и той же дороге зимой и летом АЦ с tохл = 16 оС и tохл = 50 оС режим прогрева двигателя до tохл = 80 оС будет различным, различной будет и скорость движения (рис. 5.5). Поэтому становится значимым температурный режим двигателя при содержании АЦ в гарнизонах пожарных частей. Прямые а и б характеризуют начало установившихся режимов прогрева и скорости.

t, oС

80

60

40

20

5

10

10

15

20

,мин

20

40

300

4

3

2

1

а

б



V, км/ч

Рис. 5.5. Температура охлаждающей жидкости двигателя и скорость движения ПА:

1-2 – лето; 3-4 – зима

(летом температура окружающего воздуха +25 оС, а зимой -25 оС)



Боевое развертывание заключается в снятии с АЦ пожарно-технического вооружения и подготовке его к использованию по назначению. Поэтому размеры отсеков для ПТВ должны быть согласованы с антропометрическими данными пожарных.

При условии неизменности позы пожарного у отсека верхний предел досягаемости определяется длиной руки пожарного низкого роста, а нижний – пожарного высокого роста.

ПТВ в отсеках должно размещаться в соответствии с логикой деятельности человека. Применительно к АЦ руководствуются рядом принципов. Прежде всего, ПТВ целесообразно группировать в соответствии с его назначением (прокладка рукавных линий, подъем на высоту и т.д.). Важно учитывать частоту его использования, массу, конфигурацию. Возможны различные варианты его размещения, однако необходимо соблюдать принцип минимальных затрат времени на боевое развертывание.

Ликвидация горения – боевое действие, при котором использование АЦ следует рассматривать как боевые условия эксплуатации.

Продолжительность ликвидации горения изменяется в очень широких пределах (рис. 5.6). До 10 мин ликвидируется около 20 % пожаров. Это время соизмеримо со временем следования на пожар. От 30 до 60 мин тушат до 20 % пожаров и т.д. Однако около 14 % пожаров тушат более двух часов. Тушение крупных пожаров может производиться в течение 5 – 6 ч и более в случае затяжных пожаров.

Рис. 5.6. Распределение продолжительности ликвидации горения:

1 – 1994 г.; 2 – 1998 г.

п,%

20

10

20

40

60

80

1000

120

1

2

1994

1998

,мин



При тушении пожара двигатели ПА работают в стационарных условиях. При этом ухудшаются условия их охлаждения, так как отсутствует натекающий поток воздуха на радиаторы. Поэтому двигатель, насос и его трансмиссия должны эффективно работать в течение не менее 6 ч.

Виды ПТВ и их возимый запас на АЦ обосновываются на основании опыта тушения пожаров. Так, в соответствии с НПБ 163-98 вместимость цистерны для воды рекомендуется выбирать из ряда от 0,8 до 8 м3 и подаче лафетного ствола 20 – 40 л/с. Вместимость бака для пенообразователя предлагается равной 6 % от вместимости цистерны (0,08 – 1 м3).

Пожарные автоцистерны практически применяются для тушения подавляющего большинства пожаров. При этом с участием одной АЦ тушат до 50 % всех пожаров, с участием двух АЦ – около 35 %, а трех АЦ – тушат около 10 % всех пожаров.

Стволы РС-50 применяют при тушении около 7,5 %, а на 70 % используют от 1 до 3 стволов. Стволами РС-70 тушат около 2 % пожаров.

При тушении одним стволом РС-50 1 м3 воды расходуется за время не более 5 мин, а тремя стволами – за время, не превышающее 1,5 мин. Сопоставляя эти результаты со временем продолжительности тушения пожаров, легко приходим к выводу, что возимые на АЦ запасы воды не обеспечат тушение всех пожаров. Поэтому на АЦ, кроме возимого запаса воды, должен быть предусмотрен забор воды от водопроводной сети и из различных водоемов.

В зависимости от условий применения АЦ на них могут устанавливаться центробежные насосы с различными рабочими параметрами с подачей 30 – 110 л/с и напоре 100 м и больше. Возможно применение насосов высокого давления или комбинированных.

Е, кВт/м2

30

15

1

2

20

40

60

L, м

3мин

При боевой работе на пожарах нефтегазовых предприятий, в лесах, лесобиржах, торфяных разработках ПА могут подвергаться воздействию мощных тепловых потоков (рис. 5.7). Для уменьшения воздействия их на пожарные автомобили ограничивается время их нахождения на одном месте, т.е. осуществляется дополнительное маневрирование.

5 мин

Рис. 5.7. Зона минимального безопасного расстояния для конструкционных материалов АЦ при тушении пожара:

1 – площадь излучающей поверхности 100 м2;

2 – при тушении нефтяных фонтанов



Тепловые потоки могут являться причиной повреждения ПА различной степени. В некоторых случаях обгорает краска, растрескиваются стеклянные ограждения, обгорают резинотехнические и пластмассовые детали, загораются и сгорают автомобили. Поэтому конструкция ПА по требованию заказчика должна обеспечивать теплозащиту основных агрегатов для их защиты от теплового излучения 14,0 и 25 кВт/м2 в течение ограниченного времени.

Безопасность от теплового воздействия должна сочетать пассивную (теплооотражательные покрытия) и активную разомкнутую теплозащиту, в которой вода служит охладителем.

Сбор и возвращение в подразделение не требуют каких-либо специфических требований для их проведения. Необходимо только для обеспечения готовности ПА осуществить техническое обслуживание после пожара в требуемом объеме.

Приспособленность к человеку обеспечивается предъявлением к конструкции ПА ряда эргономических санитарно-гигиенических требований. На их основании салоны, кабины, отсеки с ПТВ, пульты управления должны быть приспособлены для нахождения и работы в них пожарных различного роста.

Ряд требований предъявляется к конструкции салонов. Они должны обогреваться зимой. Для ПА, эксплуатация которых возможна в условиях высоких тепловых потоков, должна быть предусмотрена теплоизоляция кабин. Этим должно предотвращаться термическое разложение обивочных материалов, продукты которых загрязняют атмосферу салонов.

Совершенствуя конструкцию ПА, не всегда удается реализовать все требования к ним. Поэтому на практике всегда разрабатываются мероприятия, в максимальной степени обеспечивающие рациональное использование технических возможностей АЦ. К ним относятся обучение личного состава, организация необходимых условий содержания АЦ в гаражах, выбор маршрутов следования на пожары, содержание АЦ в технически исправном состоянии.

5.3. Базовые транспортные средства и двигатели пожарныхавтомобилей

Пожарные машины создаются на шасси грузовых автомобилей. К ним предъявляют два основных требования: они должны обладать высокими удельными мощностями и проходимостью.

Для АЦ и специальных ПА используются шасси ЗИЛ, ГАЗ, КамАЗ, Урал, МАЗ. Они могут быть полноприводными (колесная формула 88.1; 66.1; 44.1) и неполноприводными (64.1; 42.2 и др.). Это дает возможность выбирать рациональные шасси для заданных регионов дислокации подразделений ГПС.

На шасси этих автомобилей установлены четырехтактные карбюраторные двигатели внутреннего сгорания или дизели. Двухтактные двигатели имеют ограниченное применение – только на некоторых мотопомпах.

В отличие от грузовых автомобилей двигатели на пожарных машинах эксплуатируются в транспортном и стационарном режимах. Потребителями энергии на ПМ являются пожарные насосы, генераторы электрического тока, приводы пожарных автомобильных лестниц и коленчатых подъемников и т.д.

В карбюраторных двигателях смесеобразование бензина с воздухом осуществляется вне их цилиндров. Готовая рабочая смесь поступает в цилиндры двигателя от карбюратора. Эта смесь при положении поршней вблизи верхней «мертвой» точки воспламеняется от искры свечи зажигания.

В дизелях дизельное топливо впрыскивается форсунками в цилиндры при положении поршней вблизи верхней «мертвой» точки. Образовавшаяся смесь распыленного форсункой дизельного топлива и воздуха воспламеняется от сжатия.

Работу двигателя внутреннего сгорания (ДВС) характеризует ряд показателей. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называют степенью сжатия (рис. 5.8):

= . (5.4)

Рис. 5.8. Индикаторная диаграмма двигателя:

rа – такт всасывания; ас – такт сжатия; сz - повышение давления при сгорании топлива; bz – рабочий ход; br – выхлоп

Q1

P, МПа

z

c

r

b

a

S, мм

BMT

HMT

Vh

Va

Vc

Q2

Изменение давления внутри цилиндра двигателя по ходу поршня в различных тактах называют индикаторной диаграммой.

Индикаторная диаграмма – диаграмма изменения давления газа в цилиндре двигателя в зависимости от изменения положения поршня, записанная с помощью прибора индикатора. Пример такой диаграммы для карбюраторного двигателя показан на рис. 5.8.

Важными параметрами индикаторной диаграммы являются давление в конце такта сжатия Рс , МПа, и давление в конце сгорания Рz , МПа.

Площадь a, c, z, b индикаторной диаграммы характеризует индикаторную работу. Принято считать, что на поршень действует некоторое среднее индикаторное давление Рi. Оно на протяжении рабочего хода поршня характеризует полезную работу. На диаграмме она обозначена знаком + .Знаком – обозначена работа, затрачиваемая на всасывание рабочей смеси и удаление отработавших газов.

Зная среднее индикаторное давление Рi, МПа, рабочий объем цилиндра Vp, л, число цилиндров i, частоту вращения коленчатого вала n, об/мин, определяют индикаторную мощность двигателя, кВт:

, (5.5)

где – тактность двигателя.

Мощность, снимаемая с коленчатого вала двигателя, меньше индикаторной мощности, так как часть ее расходуется на преодоление трения рабочих деталей, на приведение в действие вспомогательных механизмов (топливного насоса, газа, распределительного механизма и т.д.). Мощность, соответствующая этим потерям, называется мощностью механических потерь Nм.

Полезную мощность, которую можно снимать с коленчатого вала двигателя, называют эффективной мощностью, кВт:

е = i - Nм. (5.6)

Совершенство конструкции двигателя оценивают величиной механического коэффициента полезного действия:

м = (5.7)

Мощность Ne и Nм определяют на специальных стендах. С помощью тормозных устройств определяют также крутящие моменты Me, Нм, при заданных частотах вращения коленчатого вала n, об/мин. Эффективную мощность, кВт, определяют по формуле

Ne = Me = Me(5.8)

где е – эффективный крутящий момент, Нм; ω – скорость вращения коленчатого вала двигателя, с-1.

Важной характеристикой является удельный эффективный расход топлива ge, кг/(кВт·ч):

ge = , (5.9)

где Gт – часовой расход топлива, кг/ч.

Параметры основных показателей, характеризующих двигатели, приводятся в табл. 5.2.

Таблица 5.2

Показатели Размерность Карбюраторныедвигатели Дизели

Степень сжатия,

Давление Рс

Давление Рz

Механический коэффициент полезного действия м

Удельный эффективный расход топлива gе -

МПа

МПа

-

г/(кВтч) 4 – 10

0,8 – 2,0

3 – 6

0,75 – 0,85

290 – 350 14 – 17

3 – 7

6 – 9

0,7 – 0,83

234 – 265

На пожарных автомобилях предпочтительнее использовать дизели, так как расход топлива в них меньше на 25 – 30 %, чем у карбюраторных двигателей. Одновременно следует указать, что пуск дизеля более тяжел, чем карбюраторного двигателя вследствие различия величины .

Различаются двигатели и по значениям величин, характеризующих токсичность отработавших газов (табл. 5.3).

Таблица 5.3

Тип двигателя СН, млн-1 СО, % NOx, млн-1 Сажа, г/м3

Карбюраторный

Дизельный 1000 – 3500

50 – 1000 0,2 – 6

0,05 – 0,3 400 – 4500

200 – 2000 0,05

0,1 – 0,3

Концентрацию CO выражают в объемных процентах. Концентрацию СН и x записывают в миллионных долях, например:

rCH =(5.10)

где rCH – концентрация СН в отработавших газах, млн-1; VCН – парциальный объем СН, м3; Vсм – объем выпускных газов, м3.

Очень опасной является сажа. На ней адсорбируется большое количество веществ и она, к сожалению, не улетучивается, а осаждается на пол. Наиболее опасным из них является бенз--пирен, так как по некоторым данным он является возбудителем онкологических заболеваний.

Характеристики двигателей – это зависимости основных показателей двигателей (Ne, Me и ge ) от частоты вращения его коленчатого вала n, об/мин.

Характеристику Ne = f(n) называют скоростной (кривая 1 на рис.5.9). Скоростную характеристику, полученную при полной подаче топлива, называют внешней. Характеристики, получаемые при неполной подаче топлива, называют частичными (кривая 2 на рис 5.9).

В характеристиках указывают минимальные обороты двигателя nmin; обороты nN, соответствующие максимальной мощности Ne max, и обороты максимального крутящего момента nMe max.

Рис. 5.9. Скоростная характеристика двигателя:

1 – внешняя характеристика; 2 – частичная характеристика; 3 – крутящий момент; 4 – удельный расход топлива; 5 – регуляторные характеристики

1

2

3

4

5

Ne, кВт

Me, Hм

Nemax

MeN

ge г/(кВтч)

n, об/мин

n, max

nN

nMemax

nmin

Memax

1322705-118110

В случае установки на двигателе ограничителей скорости Ne и Me изменяются, как показано прямыми 5(см. рис 5.9) Максимальная скорость nmax отличается от nN на величину около 10 %.

Из рис. 5.9 следует, что область, ограниченная внешней скоростной характеристикой (кривая 1) и диапазоном скоростей от до nN, является областью, в которой эксплуатируются двигатели. Для примера приводится внешняя скоростная характеристика дизеля КамАЗ-740.11 мощностью 176 кВт (рис. 5.10).

В документации на двигатели наиболее часто указывают Ne max и nN. По параметрам этих величин можно построить внешнюю скоростную характеристику двигателя, используя формулу

Ne = Ne max (5.11)

где n – текущие значения частот вращения вала двигателя, об/мин.

Для карбюраторных двигателей а = b = с = 1, а для дизелейа = 0,53; b = 1,56 и с = 1,09.

Приводимые в справочниках значения Ne max и nN получены на основании стендовых испытаний. На автомобилях же мощность частично расходуется на привод вентилятора, компрессора, часть ее теряется в глушителе и т.д. Поэтому в расчетах эту часть энергии учитывают коэффициентом коррекции Кк. Для двухосных автомобилей Кк = 0,88, а для трехосных Кк = 0,85.

Рис. 5.10. Внешняя скоростная характеристика двигателя КамАЗ-740.11:

1 – крутящий момент; 2 – внешняя скоростная характеристика; 3 – удельный расход топлива

1

2

3

850

800

750

180

100

230

1000

2000

n, об/мин

Mk,Hм

Ne,кВт

ge,г/(кВт·ч)

200



Важной характеристикой для двигателей внутреннего сгорания является величина крутящего момента. Его величина и изменение в зависимости от частоты вращения вала двигателя M = f(n) и характеризуют приспособляемость двигателя. Это способность двигателя преодолевать (без воздействия со стороны водителя) возможное увеличение сопротивления от внешней нагрузки. Она характеризуется отношениями:

K = или K =.(5.12)

Чем круче поднимется кривая Ме при уменьшении n, тем меньше снизится скорость автомобиля при увеличении сопротивления движению. Следовательно, можно будет преодолевать более крутые подъемы, не переходя на пониженную передачу. Следовательно, чем больше К, тем лучше тяговые качества автомобиля, выше средняя скорость движения и легче управление.

По показателю К предпочтительнее бензиновые двигатели. У нихK = 1,2 – 1,4, а у дизелей K = 1,05 – 1,15. Поэтому у дизелей имеются корректоры, повышающие K. Кроме того, на автомобилях с дизелями всегда больше число ступеней скоростей в коробке передач, чем у автомобилей с карбюраторными двигателями.

На пожарных автомобилях используются двигатели различных типов и серий. Параметры основных характеристик некоторых двигателей приводятся в табл. 5.4.

Таблица 5.4



п/п Марка Тип Ne max, кВт nN, об/мин

1

2

3

4

5

6

7

8 ЗИЛ-130

ЗИЛ-508.10

ЗМЗ-66

ЯМЗ-236

ЯМЗ-138

ЗИЛ-645

КамАЗ-740

КамАЗ-740.11 К

К

К

Д

Д

Д

Д

Д 110

110

84,4

132

176

132

154

176 3200

3200

3200

2100

2100

2800

2600

2200

Примечание. К – карбюраторный двигатель; Д – дизель.

Режимы эксплуатации двигателей ПА характеризуются рядом особенностей.

В гаражах пожарных частей они содержатся при температурах окружающей среды, а зимой при температуре не ниже 12 оС. Естественно, что это и температура охлаждающей жидкости двигателя. При вызове и следовании на пожар в течение 5 – 10 мин двигатели работают в режиме прогрева. Если пути следования относительно небольшие, то в транспортном режиме ПА двигатели эксплуатируются в режиме прогрева. В среднем в течение года пробеги ПА по спидометру достигают значений 3500 – 4000 км.

Второй особенностью эксплуатации двигателей является продолжительный отбор мощности от него в стационарном режиме. В стационарном режиме работа на насосе достигает 100 – 120 ч в год. Так как один час работы двигателя в стационарном режиме эквивалентен пробегу, равному50 км, то приведенный пробег равен 5000 – 6000 км в год. Это соизмеримо с продолжительностью эксплуатации в транспортном режиме.

Требованиями НПБ обусловлено, что двигатель должен обеспечить непрерывную работу насоса в течение шести часов при номинальных значениях напора и величины подачи воды. Это очень жесткие условия еще и потому, что в стационарном режиме эксплуатации отсутствует стационарный натекающий поток воздуха на радиатор, имеющий место в транспортном режиме эксплуатации. Поэтому не исключено, что в некоторых случаях произойдет перегрев двигателя. Во избежание этого неприятного явления экспериментально была установлена необходимость ограничить величину мощности, потребляемой в стационарном режиме nст = 0,7 Nmax. Во избежание большой интенсивности износа двигателей было установлено ограничение частоты вращения вала двигателя n = 0,75 nN.

Отобразим эти ограничения на внешней скоростной характеристике двигателя (рис. 5.11) и из точки к построим частичную скоростную характеристику ак.

Рис. 5.11. Поле отбора мощности от двигателяв стационарном режиме:

1 – внешняя скоростная характеристика; 2 – частичная скоростная характеристика

a

15 %

0,7 Nemax

n, об/мин

nN

nmin

0,75 nN

К

Ne, кВт

Ne max

1

2

Ее можно построить по приведенной выше формуле (5.11), приняв координаты точки к за исходные. Рекомендуется также, чтобы в точке к был запас мощности не менее 15 %, как показано на рисунке.

Ограничение режимов эксплуатации двигателя по мощности и частоте вращения вала значительно сокращает поле использования его полезной мощности. Это, естественно, требует жесткого согласования режимов работы двигателя и потребителя.

В случае, если потребляемая мощность будет превосходить мощность, соответствующую точке к, то необходимо устройство дополнительного охлаждения двигателя. Для этого на некоторых автоцистернах установлены теплообменники (рис. 5.12). Вода из системы охлаждения двигателя поступает в корпус 1 теплообменника и охлаждается водой, поступающей из пожарного насоса.

Рис. 5.12. Принципиальная схема теплообменника:

1 – корпус теплообменника; 2 – змеевик с подачей воды из насоса

Рис. 5.13. Система выхлопа отработавших газов (ОГ):

1 – патрубки; 2 – трубка к вакуумному крануи насосу; 3 – отвод газов для обогревацистерны; 4 – выхлопная труба;5 – глушитель; 6 – газоструйныйвакуумный аппарат

1

2

6

1

5

3

4

2



В двигателях автоцистерн изменена система выпуска отработавших газов. Перед глушителем 5 (рис. 5.13) установлен газоструйный вакуумный аппарат 6. Отработавшие газы двигателя поступают к патрубкам 1. Газоструйный насос в аппарате 6 отсасывает воздух из пожарного насоса по трубке 2. В пожарном насосе создается необходимый вакуум для заполнения его водой из постороннего источника.

Из аппарата 6 отработавшие газы поступают в резонатор, соединяющий звуковые сигналы. Из глушителя отработавшие газы выходят в атмосферу по трубопроводу 4. В зимнее время они по трубопроводу 3 направляются в систему обогрева цистерны или насосного отсека с пожарным насосом.

5.4. Трансмиссии и приводы управления ПА

Трансмиссией называется совокупность кинематически связанных между собой узлов и деталей, предназначенных для передачи и распределения энергии от двигателя к исполнительным механизмам.

Трансмиссии обеспечивают: включение и выключение исполнительных механизмов, передачу крутящего момента, изменение частоты вращения вала исполнительного механизма и изменение направления (если это необходимо) его вращения.

На ПА, как правило, кроме основной трансмиссии, для привода ведущих колес устанавливают дополнительную для передачи энергии от базового двигателя шасси к исполнительным механизмам. Исполнительными механизмами являются: пожарные насосы, механизмы подъема, поворота и выдвигания автолестниц и коленчатых подъемников, электрогенераторов на специальных ПМ и т.д.

В современных конструкциях пожарных машин применяются трансмиссии механические, гидромеханические, комбинированные. Они должны удовлетворять ряду требований:

быть компактными, легкими в управлении и иметь высокий КПД;

обеспечивать в широком интервале изменение нагружения исполнительных механизмов;

иметь предохранительные устройства, защищающие детали и узлы исполнительных механизмов от возможных перегрузок.

Все используемые в конструкциях пожарных машин трансмиссии характеризуются следующими основными параметрами: передаточным числом, КПД и передаваемым вращающим моментом.

Передаточное число простейшей механической передачи, состоящей из ведущей и ведомой шестерен, определяется следующим соотношением:

, (5.13)

где n1, n2, z1, z2, d1, d2 – соответственно частота вращения, число зубьев и диаметры начальных окружностей ведущего и ведомого зубчатых колес.

При u < 1 передача называется ускоряющей и при u >1 – понижающей.

Если трансмиссия имеет несколько передающих пар, из которых каждая имеет свое передаточное число, то общее передаточное число трансмиссии будет равно

uобщ= u1 u2…un. (5.14)

КПД трансмиссии оценивается потерей мощности при передаче ее от двигателя к исполнительному механизму и определяется по формуле

, (5.15)

где Ne – эффективная мощность двигателя; Nм – мощность механических потерь в трансмиссии; Nи – мощность, подводимая к исполнительному механизму.

КПД определяется экспериментальным путем при стендовых испытаниях трансмиссии.

Величина η в значительной степени зависит от типа и конструкции трансмиссии, частоты вращения ее элементов, передаваемой величины крутящего момента, а также вязкости и уровня масла в агрегатах трансмиссии.

Общий КПД трансмиссии, состоящий из нескольких механизмов, определяется по формуле

общ = …n, (5.16)

где ,, n – соответственно КПД промежуточных элементов, составляющих трансмиссию.

Крутящий момент исполнительного механизма Ми связан с эффективным крутящим моментом двигателя Ме для случая равномерного вращения зависимостью

Ми = Ме uобщ общ. (5.17)

Механические трансмиссии включают в себя механические передачи, муфты, сцепления и другие элементы, обеспечивающие передачу энергии.

Механические передачи по принципу работы делятся на передачи трением с непосредственным контактом тел качения (фрикционные) и с гибкой связью (ременные передачи); передачи зацеплением с непосредственным контактом (зубчатые и червячные) и с гибкой связью (цепные).

Во фрикционных передачах движение передается с помощью сил трения скольжения.

Схема простейшей фрикционной передачи с постоянным передаточным отношением показана на рис. 5.14. Полезное окружное усилие F определяется по формуле

F = Qf, (5.18)

где – коэффициент запаса сцепления, учитывающий упругое скольжение; Q – усилие прижатия трущихся поверхностей муфт; f – коэффициент трения.

Рис. 5.14. Схема фрикционной передачи с цилиндрическими катками

d2

d1

Q

Q

F

a

В связи с упругим проскальзыванием ведомого ролика его окружная скорость v равна

v v, (5.19)

где – коэффициент, учитывающий упругое скольжение; для передач, работающих без смазки, = 0,995 – 0,99; v – окружная скорость ведущего ролика.

Передаточное отношение этой передачи равно

i = n1/n2 = , (5.20)

где n1 и n2 – частоты вращения ведущего и ведомого тел качения.

Такие передачи используются в качестве привода вакуумных пластинчатых насосов пожарных центробежных насосов нового поколения.

Коэффициент запаса сцепления для силовых передач принимают равным 1,25 – 1,5.

Коэффициент трения резины по стали можно принимать равным0,35 – 0,45.

Простейшая ременная передача (рис. 5.15) состоит из ведущего и ведомого шкивов и ремня, надетого на шкивы с натяжением и передающего окружное усилие с помощью сил трения.

d2

d2

n1

n2

a

Рис. 5.15. Схема ременной передачи

В пожарных машинах используются преимущественно клиноременные передачи. Для них величина полезного окружного усилия F равна

F = z c F0/к , (5.21)

где z – число ремней в передаче;c – коэффициент, зависящий от угла обхвата и скорости ремня; F0 – допускаемая полезная нагрузка на ремень;к – коэффициент, учитывающий режим нагрузки (к = 1 – 1,6).

Ременные передачи используются в приводах электрогенераторов, дымососов и т.д.

Зубчатые передачи. Эти механизмы с помощью зубчатого зацепления передают или преобразуют движение с изменением угловых скоростей и моментов. В пожарных машинах зубчатые передачи применяют для преобразования и передачи вращательного момента между валами с параллельными или перекрещивающимися осями.

В первом случае они используются в коробках отбора мощности в дополнительных трансмиссиях привода пожарных насосов. В них используются зубчатые колеса с прямыми и косыми зубьями. Они применяются в комбинированных пожарных насосах для передачи крутящего момента от валов низконапорной к валам высоконапорной ступени. В механизмах поворота пожарных автолестниц и пожарных подъемников используются передачи с внутренним зацеплением.

Во втором случае используются червячные передачи в механизмах поворота и подъема колен пожарных автолестниц и пожарных автоподъемников.

Зубчатые передачи для преобразования вращательного движения в поступательное используются в приводе перепускного клапана пеносмесителя насоса ПЦНН-40/400. В них движение осуществляется зубчатым колесом и рейкой.

3

4

5

2

1

Рис. 5.16. Схема коробки отбора мощности:

1 – зубчатое колесо ведущее; 2 – промежуточное зубчатое колесо;3 – ведомая шестерня; 4 – соединительная муфта; 5 – ведомый вал

Зубчатые передачи составляют основу коробок отбора мощности (КОМ). Принципиальная схема одной из них представлена на рис. 5.16. Корпус КОМ крепится на картере коробки передач или раздаточной коробки трансмиссии автомобиля. От ведущего зубчатого колеса 1 на валу коробки передач мощность передается с помощью промежуточного зубчатого колеса 2 к ведомой шестерне 3 КОМ. С помощью зубчатой муфты он затем передается на вал 5 привода пожарного насоса.

КОМ являются основным механизмом дополнительных трансмиссий на автоцистернах. В зависимости от колесной формулы шасси и места размещения пожарного насоса (в кормовом насосном отсеке или у кабины АЦ) схемы компоновок этих трансмиссий могут быть различными (рис. 5.17).

г

5

1

2

3

4

5

6

7

а

1

2

3

4

5

6

7

б

в

1

2

4

3

4

6

7

8

7

5

4

3

2

1



Рис. 5.17. Схемы компоновки дополнительных трансмиссий: а, б – вариант I; в – вариант II; г – вариант – III:

1 – двигатель; 2 – сцепление; 3 – коробка отбора мощности; 4 – карданный вал;5 – опоры; 6 – пожарный насос; 7 – коробка передач; 8 – раздаточная коробка



Вариант I (рис. 5.17, а) применяют на АЦ-40(131)137; на автоцистернах на шасси Урал АЦ-8-40(55571), на шасси ЗИЛ АЦ-2-40(5301) и др. Разновидностью первого варианта является схема со средним расположением насоса (рис. 5.17, б), например на АЦ-40(43202) на шасси «Урал» и др.

Отличительной особенностью такой схемы является укороченная длина карданной передачи, не имеющей промежуточной опоры. В обеих схемах варианта I крутящий момент от двигателя 1 передается через механизм сцепления 2, коробку передач 7, коробку отбора мощности 3, карданную передачу 4 и вал пожарного насоса 6. Карданная передача при заднем расположении насоса имеет две промежуточные опоры 5. На всех пожарных автомобилях, выполненных на шасси ЗИЛ, устанавливают коробку отбора мощности КОМ-68Б, а на шасси «Урал» – КОМ-Ц1А;

Вариант II (рис. 5.17, в) осуществляют на автоцистернахАЦ-30(53А0106Б, АЦ-2,5-40(33092), монтируемых на шасси ГАЗ с колесной формулой 4х2. Мощность от двигателя 1 к валу насоса передается через механизм сцепления 2, коробку перемены передач 7, коробку отбора мощности 3 и далее через два карданных вала 4, соединенных на валу насоса 6. Карданная передача от коробки отбора мощности к валу насоса имеет промежуточную опору 5.

Вариант III представлен на рис. 5.17, г. Такую схему применяют, как правило, на всех пожарных автомобилях, монтируемых на шасси повышенной проходимости с колесной формулой 4х4. Например, на АЦ-30(66)-146 пожарный насос 6 приводится в действие от двигателя 1 через механизм сцепления 2, коробку передач 7, карданный вал 4, раздаточную коробку 8, коробку отбора мощности 3.

Рассмотренные варианты схем компоновки дополнительных трансмиссий показывают, что наиболее рациональной схемой является вариант среднего размещения пожарного насоса, ввиду существенных преимуществ по сравнению с задним расположением. К числу таких преимуществ относятся: более короткие элементы водопенных коммуникаций; отсутствие дополнительной системы управления сцеплением; укороченная длина карданных валов, позволяющая осуществлять более низкое размещение емкости цистерны и, следовательно, снизить центр массы пожарного автомобиля.

Недостатком среднего размещения пожарного насоса является неудобный доступ к нему при техническом обслуживании и устранении возможных неисправностей.

Гидромеханические трансмиссии включают механические и гидравлические передачи. Основные достоинства: плавное изменение передаваемых скоростей и моментов вращения, компактность конструкций, легкость управления. Недостаток – невозможность реализовать задний ход.

Гидравлические передачи по принципу действия делятся на две группы: гидродинамические и гидростатические.

Гидродинамические передачи применяются в трансмиссиях некоторых грузовых автомобилей. В этих передачах используется кинетическая энергия рабочей жидкости для создания необходимого давления на ведомые звенья гидропередачи в целях приведения их в движение. Постоянный объем жидкости в них используется как передаточное звено.

К гидродинамическим передачам относятся гидромуфты и гидротрансформаторы.

Гидромуфта (гидравлическое сцепление) применяется в качестве привода вентилятора в системе охлаждения двигателей пожарных автомобилей на шасси КамАЗ.

Гидромуфта (рис. 5.18) имеет ведущую и ведомую части. Ведущая часть состоит из насосного колеса 3 и крышки 2. Ведомая часть 1 является турбинным колесом. Колеса имеют лопасти 4. Они установлены между наружными 5 и внутренними 6 торами.

Объем, образованный колесами, заполнен маловязким маслом. Насосное колесо 3, вращаясь, нагнетает масло в турбинное колесо 1, из которого оно вновь поступает в насосное колесо 3. Образовавшийся замкнутый поток жидкости, движущийся по межлопастным каналам (показано стрелками), одновременно вращается вместе с насосным (или турбинным) колесом. Жидкость, получая энергию от насосного колеса, переносит ее к турбинному колесу. Воздействуя на его лопасти, она приводит колесо во вращение. С увеличением скорости насосного колеса увеличивается передаваемый вращающий момент.

1

2

3

4

5

6

7

8

9*

11

10

12



Рис. 5.18. Гидромуфта:

1 – турбинное колесо; 2 – крышка; 3 – насосное колесо; 4 – лопасти; 5 – наружный тор; 6 – внутренний тор; 7 – клапан заполнения; 8 – радиатор; 9 – предохранительный клапан; 10 – насос питания; 11 – бак; 12 – клапан опорожнения

При передаче номинального момента КПД муфты достигает значений 0,87 – 0,95.

Для полного выключения муфты необходимо удалить из нее масло, а для включения – заполнить маслом. Для этого предусматривается устройство, схематически показанное на рисунке.

Гидротрансформатор в отличие от гидромуфты, кроме насосного и турбинного колес, имеет неподвижное лопастное колесо – реактор 1 (рис. 5.19), установленный на обгонной муфте 2. При увеличении скорости n реактор отключается и механизм работает как гидромуфта.

Наличие в механизме реактора позволяет в 2 – 5 раз увеличивать передаваемый крутящий момент. Однако этого недостаточно для обеспечения требуемого для автомобиля диапазона передаточных чисел. Кроме того, на них невозможно обеспечивать обратный ход. Поэтому их применяют в сочетании с механическими ступенчатыми коробками передач.

Рис. 5.19. Гидротрансформатор:

1 – реактор; 2 – обгонная муфта; 3 – полый невращающийся вал

1

2

3

Гидротрансформаторы характеризуются КПД в пределах 0,85 – 0,92 и используются в трансмиссиях аэродромных автомобилей на шасси БелАЗ и МАЗ.

Гидростатические передачи – механизмы, использующие гидростатический напор жидкости для передачи возвратно-поступатель-ного или вращательного движения.

Для передачи возвратно-посту-пательного движения используются гидроцилиндры с поршнями или штоками. Пример такого гидроцилиндра показан на рис. 5.20. Скорость и направление движения штока 5 зависит от направления подачи жидкости.

Гидроцилиндры используются в механизмах подъема и опускания пожарных автолестниц и пожарных автоподъемников, их выдвижных опор, приводов лафетных стволов и т.д.

Рис. 5.20. Гидроцилиндр:

1 – цилиндр; 2, 4 – уплотнения; 3 – поршень; 5 – шток; 6 – замыкатель; 7 – кран управления

1

2

3

4

5

7

6

Для передачи вращательного движения используются аксиально-поршневые насосы. Их сочетание с механическими передачами составляет область комбинированных трансмиссий. Принципиальная схема такой трансмиссии показана на рис. 5.21. От коробки отбора мощности 1 вращающий момент передается на аксиально-поршневой насос 2. С помощью специальных гидросистем 3 он затем передается на гидромотор 4, а от него к исполнительному механизму 5 червячной передачи подъема колен автолестниц. Такого же типа гидромеханическая передача используется в механизмах поворота пожарных автолестниц и автоколенчатых подъемников.

1

2

3

4

5

6

Рис. 5.21. Схема гидромеханической передачи:

1 – КОМ; 2 – гидронасос; 3 – гидравлическая система управления; 4 – гидромотор; 5 – червячная передача; 6 – барабан

VP,P

VP,P

VQ

Q

VQ

Q

5

5

1

1

1

3

3

2

4

4

б

а

Рис. 5.22. Схемы полиспастов:

а – канат сбегает с неподвижного блока; б – канат сбегает с подвижного блока;

1–подвижный блок; 2–неподвижный блок; 3–канат; 4–ось неподвижных блоков; 5–ось подвижных блоков

Канатные передачи (полиспасты) просты по устройству, позволяют создавать большие усилия на исполнительных механизмах, удобны в эксплуатации.

Основными элементами полиспастов являются системы подвижных и неподвижных блоков и канаты (рис. 5.22, а, б).

Все блоки вращаются на осях 4 и 5. Блоки, установленные на неподвижной оси 4, называются неподвижными, а перемещающиеся по оси 5 – подвижными.

Полиспасты выполняются по различным схемам: в одних – канат сбегает с неподвижного блока (рис. 5.22, а), в других (рис. 5.22, б) – с подвижного.

У полиспастов со сбегающим с неподвижного блока канатом усилие на нем, Н, определяется по формуле

Р = (5.22)

где Q – сила тяжести груза, Н; q – сила тяжести подвижной обоймы полиспаста, Н; n – число блоков в системе; – коэффициент полезного действия блока.

Значение КПД для блоков на подшипниках качения принимают равными = 0,97 – 0,98, а для блоков на подшипниках скольжения = 0,94 – 0,86.

Число блоков n в системе характеризует его кратность.

Скорость перемещения сбегающего каната с неподвижного блока системы (рис. 5.22, а) равна

Vр = VQn. (5.23)

Для случая, когда канат сбегает с подвижного блока справедливы зависимости:

Р = (5.24)

Vp = VQ (n + 1). (5.25)

Канатные передачи применяются в механизмах выдвигания колен лестниц в пожарных автолестницах.

Недостатком полиспастов является то, что усилия, прилагаемые к канатам, могут передаваться только в одном направлении.

Приводы управления механизмами ПА можно классифицировать так: механические, гидравлические, пневматические.

S

F1

F2

h

Рис. 5.23. Схема механическогопривода

Принципиальная схема механического привода непосредственного действия показана на рис. 5.23. Управление осуществляется под действием усилия F1, прилагаемого водителем к рычагам или педалям, включающими тот или иной механизм. Максимальное усилие на рычаге не должно превышать 150 Н при ходе 20 – 30 см, а на педалях не более 250 Н.

Соотношение между усилием на рукоятке рычага и усилием включения рабочего органа исполнительного механизма системы с механическим приводом характеризуется передаточным числом u = S/h . Обычно u = 25 – 40.

Такие приводы используются для включения КОМ, газоструйных вакуумных аппаратов, приводов вакуумных насосов ПЦН и т.д.

Принципиальная схема гидравлического привода представлена на рис. 5.24. В гидрокамере 1 запаян сильфон 2. В разгруженном состоянии он удерживается пружиной 7. Трубка из этого сильфона соединена с корпусом 4 механизма включения, в котором размещен сильфон 5 со штоком 6. Сильфон 5 удерживается в растянутом состоянии пружиной 7. При подаче воды пожарным насосом она поступает в гидрокамеру, заполняя пространство между корпусом 1 и сильфоном 2, деформируя его. Внутренняя полость сильфона трубки 3 и пространства между корпусом исполнительного механизма 4 и сильфоном 5 заполнено гидравлической жидкостью (например, тормозной). Давлением этой жидкости деформиру-ется сильфон 5, и шток 6 выключает механизм потребителя, например ваку-умный насос. В случае, если произойдет обрыв столба жидкости во всасы-вающей линии пожарного насоса, снизится давление в гидрокамере и, следовательно, в камере исполнительного механизма. Под влиянием пружины 7 штоком 6 будет включен вакуумный насос. Автоматически произойдет забор воды.

Рис. 5.24. Схема гидропередачи:

1 – корпус гидроблока;2 – сильфон; 3 – трубка; 4 – корпус исполнительного механизма; 5 – сильфон; 6 – шток;7 – пружина

7

6

5

4

3

2

1

7

Электропневмопривод применяется для включения механизмов на автоцистернах, автолестницах и других ПА.

Принципиальная схема привода показана на рис. 5.25. Пружиной 3 поршень 4 со штоком 2 отжаты вправо. Управляемый механизм выключен. При включении электромагнитного клапана 6 точки а' и b' займут место точек а и b. При этом сжатый воздух по пневмоприводу 7 поступит в надпоршневое пространство. Давление воздуха на поршень 4 сожмет пружину 3 и штоком 2 будет включен управляемый механизм.

2

1

3

4

5

6

7

8

9

b

b

a

a



Рис. 5.25. Схема электропневмопривода:

1 – пневмоцилиндр; 2 – шток; 3 – пружина; 4 – поршень; 5, 7 – пневмопривод;6 – электромагнитный клапан; 8, 9 – потребители

Глава 6

ЭЛЕМЕНТЫ ТЕОРИИ ДВИЖЕНИЯ ПОЖАРНОГО АВТОМОБИЛЯ

Теория движения пожарного автомобиля (ПА) рассматривает факторы, которые определяют время следования пожарного подразделения к месту вызова. В основу теории движения ПА положена теория эксплуатационных свойств автомобильных транспортных средств (АТС).

Для оценки свойств конструкции ПА и его способности своевременно прибыть к месту вызова необходим анализ следующих эксплуатационных свойств: тягово-скоростных, тормозных, устойчивости движения, управляемости, маневренности, плавности хода.

6.1. Тягово-скоростные свойства пожарного автомобиля

Тягово-скоростные свойства ПА определяются его способностью к движению под действием продольных (тяговых) сил ведущих колес. (Колесо называется ведущим, если к нему передается через трансмиссию крутящий момент от двигателя АТС.)

Эта группа свойств состоит из тяговых свойств, позволяющих ПА преодолевать подъемы и буксировать прицепы, и скоростных свойств, позволяющих ПА двигаться с высокими скоростями, совершать разгон (приемистость) и двигаться по инерции (выбег).

Для предварительной оценки тягово-скоростных свойств используется удельная мощность NG ПА, т.е. отношение мощности двигателя N, кВт, к полной массе автомобиля G, т. По НПБ 163-97 удельная мощность ПА должна быть не меньше 11 кВт/т.

У отечественных серийных ПА удельная мощность меньше рекомендованного НПБ значения. Увеличить NG серийных ПА можно, если устанавливать на них двигатели с большей мощностью или не полностью использовать грузоподъемность базового шасси.

Оценка тягово-скоростных свойств ПА по удельной мощности может быть только предварительной, так как часто АТС с одинаковой NG имеют различную максимальную скорость и приемистость.

В нормативных документах и технической литературе нет единства в оценочных показателях (измерителях) тягово-скоростных свойств АТС. Общее число предлагаемых оценочных показателей более пятнадцати.

Специфика эксплуатации и движения (внезапный выезд с непрогретым двигателем, интенсивное движение с частыми разгонами и торможениями, редкое использование выбега) позволяет выделить для оценки тягово-скоростных свойств ПА четыре основных показателя:

максимальную скорость vmax ;

максимальный подъем, преодолеваемый на первой передаче с постоянной скоростью (угол αmax или уклон imax );

время разгона до заданной скорости tυ;

минимально устойчивую скорость vmin .

Показатели vmax, αmax, tυ и vmin определяются аналитически и экспериментально. Для аналитического определения этих показателей необходимо решить дифференциальное уравнение движения ПА, справедливое для частного случая – прямолинейного движения в профиле и плане дороги (рис. 6.1). В системе отсчета 0xyz это уравнение имеет вид

, (6.1)

где G – масса ПА, кг; δ > 1 - коэффициент учета вращающихся масс (колес, деталей трансмиссии) ПА; Рк – суммарная тяговая сила ведущих колес ПА, Н; ΡΣ=Pf+Pi+Pв суммарная сила сопротивления движению, Н; Рf – сила сопротивления качению колес ПА, Н: Рi – сила сопротивления подъему ПА, Н; Рв – сила сопротивления воздуха, Н.

Решить уравнение (6.1) в общем виде сложно, так как неизвестны точные функциональные зависимости, связывающие основные силы (Рк,Рf,Рi, Рв) со скоростью АТС. Поэтому уравнение (6.1) обычно решают численными методами (на ЭВМ или графически).

72834578105

Рис. 6.1. Силы, действующие на пожарный автомобиль

При определении тягово-скоростных свойств АТС численными методами наиболее часто используется метод силового баланса, метод мощностного баланса и метод динамической характеристики. Для использования этих методов необходимо знать силы, действующие на АТС при движении.

6.1.1. Тяговая сила ведущих колес

Крутящий момент двигателя Мд передается через трансмиссию к ведущим колесам АТС. Приводимые в справочной литературе и технических характеристиках автомобилей данные внешних характеристик двигателей (Ne, Me) соответствуют условиям их стендовых испытаний, значительно отличающихся от условий, в которых двигатели работают на автомобилях. При стендовых испытаниях по ГОСТ 14846-81 внешние характеристики двигателя определяют при установке на него только основного оборудования (воздухоочистителя, генератора и водяного насоса), т. е. без оборудования, необходимого для обслуживания шасси (например, компрессора, гидроусилителя руля). Поэтому для определения Мд числовые значения Ме необходимо умножить на коэффициент Kc:

. (6.2)

Для отечественных грузовых двухосных автомобилей Кс = 0,88, а для многоосных – Кc = 0,85.

Условия стендовых испытаний двигателей за границей отличаются от стандартных. Поэтому при испытаниях:

по SАЕ (США, Франция, Италия) – Кс = 0,81–0,84;

по DIN (ФРГ) – Кс = 0,9–0,92;

по В5 (Англия) – Кс = 0,83–0,85;

по JIS(Япония) – Кс = 0,88–0,91.

К колесам передается крутящий момент Мк > Мд. Увеличение Мд пропорционально общему передаточному числу трансмиссии. Часть крутящего момента, учитываемая коэффициентом полезного действия трансмиссии, расходуется на преодоление сил трения. Общее передаточное число трансмиссии и является произведением передаточных чисел агрегатов трансмиссии

(6.3)

где uкuрur – соответственно передаточные числа коробки передач, раздаточной коробки и главной передачи. Значения uк, uр и ur приводятся в технической характеристике АТС.

Коэффициент полезного действия трансмиссии η является произведением КПД ее агрегатов. Для расчетов можно принимать: η= 0,9 – для грузовых двухосных автомобилей с одинарной главной передачей (42); η= 0,88 –для грузовых двухосных автомобилей с двойной главной передачей (42); η= 0,86 – для автомобилей повышенной проходимости (44);η = 0,84 – для грузовых трехосных автомобилей (64); η= 0,82 – для грузовых трехосных автомобилей повышенной проходимости (66).

Суммарная тяговая сила Pк , которую может обеспечить двигатель на ведущих колесах, определяется по формуле

(6.4)

где rD – динамический радиус колеса.

Динамический радиус колеса в первом приближении равен статическому радиусу, т.е. rD = rст. Значения rст приводятся в ГОСТах на пневматические шины. При отсутствии этих данных радиус rD тороидных шин вычисляется по формуле

, (6.5)

где d – диаметр обода; λ – 0,89 0,9 – радиальная деформация профиля; bш– ширина профиля.

Диаметр обода d и ширина профиля определяются из обозначения шины.

Использование силы Pк (6.4) для движения АТС зависит от способности автомобильного колеса, находящегося под воздействием нормальной нагрузки Gнg воспринимать или передавать касательные силы при взаимодействии с дорогой. Это качество автомобильного колеса и дороги принято оценивать силой сцепления шины с дорогой Pφn или коэффициентом сцепления φ.

Силой сцепления шины с дорогой Pφn называют максимальное значение горизонтальной реакции Тn (рис. 6.2), пропорциональное нормальной реакции колеса Rn:

; (6.6)

; (6.7)

(6.8)

Для движения колеса без продольного и поперечного скольжения необходимо соблюдать условие

. (6.9)

В зависимости от направления скольжения колеса различают коэффициенты продольного φх и поперечного φу сцепления. Коэффициент φх зависит от типа покрытия и состояния дороги, конструкции и материала шины, давления воздуха в ней, нагрузки на колеса, скорости движения, температурных условий, процента скольжения (буксования) колеса.

Gng

Xn

Yn



Рис.6.2. Схема сил, действующих на колесо автомобиля

Величина коэффициента φх в зависимости от типа и состояния дорожного покрытия может изменяться в очень широких пределах. Это изменение обусловлено не столько типом, сколько состоянием верхнего слоя дорожного покрытия. Причем тип и состояние дорожного покрытия оказывает на величину коэффициента φх значительно большее влияние, чем все другие факторы. Поэтому в справочниках φх приводится в зависимости от типа и состояния дорожного покрытия.

К основным факторам, связанным с шиной и влияющим на коэффициент φх, относятся удельное давление (зависит от давления воздуха в шине и нагрузки на колесо) и тип рисунка протектора. Оба они непосредственно связаны со способностью шины выдавливать в стороны или прорывать пленку жидкости на дорожном покрытии для восстановления с ним надежного контакта.

При отсутствии поперечных сил Pφn и Yn коэффициент φх возрастает с увеличением проскальзывания (буксования) шины по дороге. Максимум φх достигается при 20 – 25 % проскальзывания. При полном буксовании ведущих колес (или юзе тормозных колес) коэффициент φх может быть на 10 – 25 % меньше максимального (рис. 6.3, а).

С увеличением скорости движения автомобиля коэффициент φх обычно уменьшается (рис. 6.3, б). При скорости 40 м/с он может быть в несколько раз меньше, чем при скорости 10 – 15 м/с.

Определяют φх обычно экспериментально методом буксирования автомобиля с заблокированными колесами. При эксперименте регистрируют силу тяги на крюке буксира и нормальную реакцию заблокированных колес. Поэтому справочные данные по φх относятся, как правило, к коэффициенту сцепления при буксовании (юзе).

Коэффициент поперечного сцепления φу обычно принимают равным коэффициенту φх и при расчетах пользуются средними значениями коэффициента сцепления φ (табл. 6.1).

φх

φх

б

а

3

2

1

v, м/с



Рис. 6.3. Влияние на коэффициент φх различных факторов:

а – изменение коэффициента φх в зависимости от проскальзывания; б – изменениекоэффициента φх в зависимости от скорости качения колеса: 1 – сухая дорогас асфальтобетонным покрытием; 2 – мокрая дорога с асфальтобетонным покрытием;3 – обледеневшая ровная дорога

Таблица 6.1

Дорожноепокрытие Состояние покрытия Давление в шине

высокое низкое регулируемое

Асфальт, бетон Сухое

Мокрое 0,5–0,7

0,35–0,45 0,7–0,8

0,45–0,55 0,7–0,8

0,5–0,6

Щебеночное Сухое

Мокрое 0,5–0,6

0,3–0,4 0,6–0,7

0,4–0,5 0,6–0,7

0,4–0,55

Грунтовое (кроме суглинка) Сухое

Увлажненное

Мокрое 0,4–0,5

0,2–0,4

0,15–0,25 0,5–0,6

0,3–0,45

0,25–0,35 0,5–0,6

0,35–0,5

0,2–0,3

Песок Сухое

Влажное 0,2–0,3

0,35–0,4 0,22–0,4

0,4–0,5 0,2–0,3

0,4–0,5

Суглинок Сухое

В пластическом состоянии 0,4–0,5

0,2–0,4 0,4–0,55

0,25–0,4 0,4–0,5

0,3–0,45

Снег Рыхлое

Укатанное 0,2–0,3

0,15–0,2 0,2–0,4

0,2–0,25 0,2–0,4

0,3–0,45

Любое Обледенелое 0,08–0,15 0,1–0,2 0,05–0,1

При расчетах тягово-скоростных свойств АТС различием в коэффициентах сцепления колес пренебрегают и максимальную тяговую силу, которую могут обеспечить ведущие колеса по сцеплению с дорогой, определяют по формуле

(6.10)

где Rn – нормальная реакция n-го ведущего колеса. Если тяговая сила ведущих колес превышает максимальную тяговую силу, то ведущие колеса автомобиля буксуют. Для движения АТС без буксования ведущих колес необходимо выполнение условия

, (6.11)

Выполнение условия (6.11) позволяет уменьшить время следования ПА к месту вызова в основном за счет уменьшения времени разгона tr. При разгоне ПА важно реализовать максимально возможное по дорожным условиям Рк. Если ведущие колеса ПА при разгоне пробуксовывают, то для движения реализуется меньшая Рк и, как следствие, увеличивается tr. Уменьшение Рк при буксовании ведущих колес и объясняется тем, что при появлении скольжения колес относительно дороги на 20 – 25 % уменьшается φx (см. рис. 6.3). Уменьшение φx приводит к уменьшению Pφ (6.10) и, следовательно, к уменьшению реализуемой Рк (6.11).

При движении ПА с места выполнить условие (6.11) только за счет правильного выбора частоты вращения коленчатого вала двигателя и номера передачи не удается. Поэтому разгон ПА от v=0 до vmin должен происходить при частичной пробуксовке муфты сцепления. Дальнейший разгон ПА от vmin до vmax без пробуксовки ведущих колес ПА с механической коробкой передач обеспечивается за счет правильного выбора положения педали подачи топлива (частоты вращения коленчатого вала двигателя) и момента переключения на высшую передачу.

6.1.2. Сила сопротивления качению колес пожарного автомобиля

Сопротивление качению колеса с пневматической шиной по недеформируемой дороге возникает в основном за счет затрат энергии на деформацию шины, так как деформации дороги незначительны. Работа, затраченная на участке 1–2 (рис. 6.4, а) на деформацию шины, больше, чем возвращенная на участке 2–3 (рис. 6.4, а) для восстановления ее формы, так как часть энергии расходуется на внутреннее трение резины. Поэтому давление pz на участке 1–2 больше, чем на участке 2–3, и равнодействующая нормальных реакций Rn, cмещенная относительно оси 0 (рис. 6.4, а) в сторону движения, препятствует качению колеса.

Сопротивление качению колеса с пневматической шиной по деформируемой дороге (пашня, песок, неуплотненный снег) возникает в основном за счет затрат энергии на деформацию грунта (образование колеи) и на преодоление сил трения между колесом и грунтом (рис. 6.4, б).

а

б

в

0

0



Рис. 6.4. Схема сил, действующих на автомобильное колесо при качении:а – по твердой дороге; б – по мягкому грунту; в – условное изображение в расчетных схемах ПА при составлении уравнения движения

В теории движения АТС реакцию Rn принято проводить через ось колеса 0 перпендикулярно опорной поверхности, а сопротивление качению колеса учитывать за счет силы Рfn, направленной в сторону, противоположную движению колеса в плоскости дороги (рис. 6.4, в).

Сила сопротивления качению колес АТС является суммой сил сопротивления качению Рfn всех колес:

(6.12)

где fn – коэффициент сопротивления качению n-го колеса; Rn – нормальная реакция опорной поверхности n-го колеса; п – число колес.

Коэффициент сопротивления fn у ведущих и ведомых колес отличается мало. Поэтому при расчетах движения ПА Pf можно вычислять по формуле (рис. 6.1):

, (6.13)

где α – угол продольного уклона дороги; f– коэффициент сопротивления качению колеса; g= 9,81 м/с2 – ускорение свободного падения.

Коэффициент сопротивления качению f зависит в основном от типа и состояния дорожного покрытия, конструкции шин и давления воздуха в них. Для практических расчетов в интервалах скоростей до 80 – 100 км/ч коэффициент f можно считать постоянной величиной, зависящей только от типа и состояния дорожного покрытия (табл. 6.2).

Таблица 6.2

Тип дороги или покрытия Состояние дороги или покрытия Значение f

Дорога с асфальтобетонным покрытием Сухая, в хорошем состоянии

Сухая, в удовлетворительном состоянии 0,015–0,0180,018–0,020

Дорога с гравийным покрытием в хорошем состоянии Сухая 0,020–0,025

Булыжное шоссе Сухое, в хорошем состоянии

Сухое, с выбоинами 0,025–0,030

0,035–0,050

Грунтовая дорога Сухая, укатанная

Влажная (после дождя)

В период распутицы 0,025–0,0350,050–0,150,10–0,25

Песок Сухой

Сырой 0,10–0,300,060–0,150

Суглинистая и глинистая целина Сухая

В пластическом состоянии

В текучем состоянии 0,040–0,0600,100–0,2000,20–0,30

Обледенелая дорога или лед – 0,015–0,03

Укатанная снежная дорога – 0,03–0,05

При скоростях движения ПА, больших 80 – 100 км/ч, необходимо учитывать увеличение f.

Коэффициент уменьшается с увеличением размера (и соответственно грузоподъемности) шины. Увеличение нагрузки на колесо сверх номинальной приводит к увеличению f. Например, при превышении нагрузки на колесо на 20 % сверх номинальной f увеличивается на 4 %.

На дорогах с твердым покрытием f уменьшается при увеличении давления воздуха в шинах, меньшие f имеют шины с мелким рисунком протектора.

Мощность Nf , кВт, необходимая для преодоления сил сопротивления качению колес АТС, определяется по формуле

. (6.14)

Здесь v в м/с2; G в кг; g в м/с2.

6.1.3. Сила сопротивления подъему пожарного автомобиля

Сила сопротивления подъему ПА Pi , Н, является составляющей силы веса (см. рис. 6.1):

. (6.15)

Вместо α может быть задан уклон i. Уклон может быть выражен в процентах i % и промилле i, ‰. Уклон дороги i представляет собой отношение (см. рис. 6.1)

, (6.16)

где hi – превышение дороги; Si– заложение дороги. Между i, i % и zi ‰ существует соотношение

. (6.17)

При малых углах подъема дороги (< 10°) tg α ≈ sin α можно считать, что

. (6.18)

Мощность Ni , кВт, необходимая для преодоления силы сопротивления подъему АТС, определяется по формуле

, (6.19)

здесь G в кг; g в м/с2; v в м/с.

При < 10° можно считать, что

.(6.20)

6.1.4. Сила сопротивления воздуха

Движущийся ПА часть мощности двигателя расходует на перемещение воздуха и его трение о поверхность АТС.

Сила сопротивления воздуха Рв, Н, определяется по формуле

, (6.21)

где F – лобовая площадь, м2; Кв – коэффициент обтекаемости, (Нс2)/м4; v – скорость автомобиля, м/с.

Лобовой площадью называют площадь проекции АТС на плоскость, перпендикулярную продольной оси автомобиля. Лобовую площадь можно определить по чертежам общего вида ПА.

При отсутствии точных размеров ПА лобовая площадь вычисляется по формуле

, (6.22)

где В – колея, м; Нг – габаритная высота ПА, м.

Коэффициент обтекаемости определяется для каждой модели АТС экспериментально, при продувке автомобиля или его модели в аэродинамической трубе. Коэффициент Кв равен силе сопротивления воздуха, создаваемой 1 м2 лобовой площади автомобиля при его движении со скоростью 1 м/с. Для ПА на шасси грузовых автомобилей Кв = 0,5 – 0,6 (Нс2)/м4, для легковых Кв = 0,2 – 0,35 (Нс2)/м4, для автобусов Кв = 0,4 – 0,5 (Нс2/м4.

При прямолинейном движении и отсутствии бокового ветра силу Рв принято направлять вдоль продольной оси АТС, проходящей через центр масс автомобиля или через геометрический центр лобовой площади.

Мощность Nв, кВт, необходимая для преодоления силы сопротивления воздуха, определяется по формуле

. (6.23)

Здесь F в м2, v в м/с.

При v≤ 40 км/ч сила сопротивления воздуха мала и при расчетах движения ПА на этих скоростях ее можно не учитывать.

6.1.5. Сила инерции

Часто движение ПА удобнее рассматривать в системе отсчета, жестко связанной с автомобилем. Для этого к ПА необходимо приложить инерционнные силы и моменты. В теории АТС инерционные силы и моменты при прямолинейном движении автомобиля без колебаний в продольной плоскости принято выражать силой инерции Рj, Н:

,(6.24)

где j – ускорение центра масс АТС, м/с2.

Сила инерции направлена параллельно дороге через центр масс АТС в сторону, противоположную ускорению. Для учета увеличения силы инерции из-за наличия у АТС вращающихся масс (колес, деталей, трансмиссии, вращающихся деталей двигателя) введем коэффициент δ. Коэффициент δ учета вращающихся масс показывает, во сколько раз энергия, затрачиваемая при разгоне вращающихся и поступательно движущихся деталей АТС, больше энергии, необходимой для разгона АТС, все детали которого движутся только поступательно.

При отсутствии точных данных коэффициент δ для ПА можно определять по формуле

. (6.25)

Мощность Nj , кВт, необходимая для преодоления силы инерции, определяется по формуле

. (6.26)

6.1.6. Нормальные реакции опорной поверхности колес

При движении ПА нормальные реакции Rn изменяются. Уменьшение или увеличение нагрузки на п-е колесо при движении АТС характеризуется коэффициентом λп изменения нормальной реакции

(6.27)

где zn – нормальная реакция опорной поверхности (нагрузка) n-го колеса при стоянке АТС на горизонтальной дороге; Gn – масса АТС, сила веса, которая создает нагрузку zn.

Если нормальные реакции колес левой и правой стороны одной оси ПА равны, то коэффициент λn характеризует также и изменение нагрузки на ось.

Распределение силы веса (Gg) между колесами ПА зависит от положения центра масс автомобиля, жесткости подвески и рамы, давления воздуха в шинах. При вычислении zn влиянием всех факторов, кроме положения центра масс, обычно пренебрегают. Для двухосного автомобиля нагрузки zn вычисляют по формулам (рис. 6.5):

(6.28)

(6.29)

где z1, z2 –соответственно нагрузка на левое и правое колесо передней оси; z3, z4 – соответственно нагрузки на левые и правые колеса задней оси.





Рис. 6.5. Определение координат центра масс пожарного автомобиля:

1 – платформа весов

При компоновке ПА добиваются равного распределения силы веса между колесами одной оси:

(6.30)

(6.31)

Из-за обязательного выполнения требований по равенству нагрузки на левые и правые колеса одной оси в технических характеристиках АТС и ПА принято указывать только G, расстояние между осями и массы, силы веса от которых передаются каждой осью. Для двухосного АТС указываются: G, L и G12, G34 Данные по G12 и G34, которые приводятся в технических характеристиках АТС, определяются, как правило, экспериментально. Для аналитического определения G12 и G34 необходимо знать расстояния а, L или b, L. Основная погрешность аналитического определения G12 и G34 для двухосного автомобиля связана с ошибками в вычислении положения центра масс АТС, координаты которого (a или b) определяются по формулам для вычисления положения центра масс абсолютно твердого тела. Вычисление а или b по этим формулам приводит к ошибке до 10–15 %.

Для экспериментального определения z12 или z34 колеса передней или задней оси ПА устанавливают на весы (см. рис. 6.5). Для проверки равенств (6.30), (6.31) ПА устанавливают на весы колесами одной стороны. Основные требования при взвешивании: полная комплектация ПА (при отсутствии боевого расчета его имитируют балластом); горизонтальная опорная поверхность колес ПА при взвешивании; расторможенные колеса и нейтральное положение рычага механической коробки передач. Взвешивают ПА, как правило, два раза: первый – при въезде на весы передним ходом, второй – при въезде на весы задним ходом. За зачетные значения G, z12 и z34 принимаются их средние арифметические.

По результатам взвешивания судят о возможности эксплуатации ПА. Необходимо выполнение трех основных требований:

масса G ПА не должна превышать полной массы базового шасси – собственной массы базового шасси плюс грузоподъемность;

распределение массы G между осями ПА (G12 или G34) должно соответствовать распределению между осями полной массы базового шасси;

нагрузка на колеса левой и правой стороны ПА должна быть равной.

Нагрузки на оси R12 и R34 при движении ПА определяются из уравнений:

(6.32)

.(6.33)

После преобразований уравнений (6.32), (6.33) и подстановки R12 и R34, z12 и z34 формул (6.28), (6.29) в формулу (6.27) получим:

(6.34)

(6.35)

где α > 0, ј > 0 – при подъеме и разгоне АТС; α < 0, ј < 0 – при спуске и торможении АТС.

Анализ формул (6.34) и (6.35) показывает, что при движении на подъеме и разгоне ПА увеличивается нагрузка на заднюю ось и уменьшается на переднюю. При движении на спуске и торможении ПА происходит обратное явление. Этим объясняется, например, подъем передней части ПА, наблюдаемый при разгоне, и наклон ее вниз («клевок») при торможении. При движении по дорогам с асфальтобетонным покрытием коэффициенты λ12 и λ34 ПА могут изменяться в пределах от 0,5 до 1,5. Предельные значения коэффициентов достигаются при движении по крутым уклонам и при интенсивном разгоне или торможении ПА со всеми ведущими осями или при экстренном торможении.

6.1.7. Уравнение силового баланса пожарного автомобиля

При использовании метода силового баланса уравнение (6.1) записывается в виде

РВ

(6.36)

и называется уравнением силового баланса.

Последовательность решения уравнения (6.36) методом силового баланса:

1. По уравнению (6.36) вычисляется суммарная сила тяги ведущих колес, которую необходимо реализовать для движения ПА на заданной передаче (заданном и) в известных дорожных условиях (α, f) со скоростью v и ускорением j. Вычислять необходимую Рк удобнее по формуле

, (6.37)

где ψ = fcоsα + sinα – коэффициент сопротивления дороги.

Формула (6.37) получена после подстановки в правую часть уравнения (6.36) правых частей формул (6.13), (6.15), (6.21), (6.24) и последующих преобразований.

2. По формуле (6.10) вычисляется максимальная сила тяги Рφ, которую могут обеспечить ведущие колеса ПА по сцеплению с дорогой. Сила Рφ вычисляется с учетом перераспределения нагрузки между колесами ПА.

Двухосные и трехосные ПА при движении с подводом крутящего момента двигателя к ведущим колесам задних осей могут обеспечить по сцеплению с дорогой

(6.38)

Использование всех колес ПА для создания силы тяги позволяет увеличить Рφ на 15 – 30 %. Максимальная сила тяги Рφ полнопроводных ПА определяется по формуле

(6.39)

3. Проверяется выполнение неравенства (6.11). Если неравенство (6.11) не выполняется, то длительное (безостановочное) движение ПА на заданной передаче в известных дорожных условиях (α, f) со скоростью v и ускорением j невозможно. В зависимости от решаемой задачи изменяется один из перечисленных параметров и расчеты повторяются.

4. По формуле (6.4) вычисляется суммарная сила тяги (обозначим ее Ркд), которую может обеспечить двигатель на ведущих колесах ПА. Крутящий момент двигателя Мд определяется по внешней скоростной характеристике (см. рис.5.9) или по формуле (5.8) при частоте вращения коленчатого вала

, (6.40)

где nд в об/мин; v в м/с; rD в м.

5. Необходимая для движения сила тяги (обозначим ее Ркн), вычисленная по формуле (6.37), сравнивается с силой тяги Ркд , которую может обеспечить двигатель.

Если Ркн < Ркд, то движение ПА возможно при неполном открытии дроссельной заслонки (карбюраторный двигатель) или при неполной подаче топлива (дизель).

Если Ркн = Ркд , то уравнение (6.36) решено и движение ПА возможно только при полном открытии дроссельной заслонки или полной подаче топлива, т. е. при использовании внешней скоростной характеристики двигателя.

Если Ркн > Ркд, то движение ПА при заданных условиях (и, α, f, v, j) невозможно – двигатель не может обеспечить необходимую силу тяги на ведущих колесах. Один из параметров – и, α, f, v или j изменяется и расчеты повторяются с п. 1.

Методом силового баланса можно определить vmax и vmin. Для этого при расчетах необходимо изменять и и v при j = 0, α = 0. Для определения α max необходимо изменять v и α при движении ПА на первой передаче и Рв ≈ 0. Для определения tv метод силового баланса не применяют из-за большого объема расчетов.

6.1.8. Уравнение мощностного баланса пожарного автомобиля

Метод мощностного баланса основан на анализе использования мощности двигателя при движении ПА. По аналогии с уравнением силового баланса уравнение мощностного баланса ПА можно записать в следующем виде

Nп.о

NB

(6.41)

где Nд – мощность, которая передается от двигателя к трансмиссии ПА; Nтр – мощность, затрачиваемая на преодоление трения в трансмиссии; Nп.о – мощность, затрачиваемая на привод пожарного оборудования (например, насоса, механизма прокладки и сборки рукавных линии) при движении ПА.

После учета расхода мощности двигателя на работу дополнительного оборудования базового шасси (коэффициента Кс) и на трение в трансмиссии (учитывается коэффициентом η) формулы (6.14), (6.19), (6.23) и (6.26), уравнение (6.41) можно преобразовать к виду

. (6.42)

Графическое решение уравнения мощностного баланса для определения скорости движения ПА на первой и второй передачах с одновременной подачей воды из цистерны через лафетный ствол приведено на рис. 6.6.

1

2

3

v

v2

v1

N

4



Рис. 6.6. Графическое решение уравнения мощностного баланса пожарного автомобиля:- движение на первой передаче; --- движение на второй передаче;1 – Ne ; 2 – KeηNe; 3 – Nк = KeηNe – Nn; 4 – Nψ

Внешняя скоростная характеристика двигателя Ne(n) (см. рис. 5.9) построена в координатах N – v. При построении зависимости Ne(v) (см. рис. 6.6, кривая 1) предполагается, что нет пробуксовки ведущих колес ПА и для пересчета nд в v, и наоборот, можно использовать формулу (6.40).

Вниз от Ne(v) отложена мощность, которая затрачивается на преодоление трения в трансмиссии и на обеспечение работы дополнительного оборудования базового шасси. Для движения ПА и привода насоса может быть использована мощность КсηNe (рис. 6.6, кривая 2).

Мощность Nпо отложена вниз от мощности КсηNe. Мощность Nпо, затрачиваемая на привод пожарного центробежного насоса, пропорциональна третьей степени частоты вращения рабочего колеса насоса. Зависимость Ne(n), а следовательно, и зависимость КсηNe в координатах N– v (рис. 6.6, поз. 2) также представляет собой многочлен третьей степени (формула (5.11)). Поэтому зависимость мощности, которую может обеспечить двигатель на ведущих колесах ПА (рис. 6.6, кривая 3), – кубическая парабола, вид которой зависит: от внешней скоростной характеристики двигателя Ne(nд), от передаточного числа и и коэффициента полезного действия η трансмиссии ПА на включенной передаче, от передаточного числа итн и коэффициента полезного действия ηтн трансмиссии пожарного насоса, от подачи Qн, напора Hн и коэффициента полезного действия ηн насоса.

Если принять, что коэффициент f – величина постоянная и сила сопротивления воздуха при движении на первой и второй передаче пренебрежимо мала, то правая часть уравнения (6.42) представляет собой наклонную прямую (рис. 6.6, прямая 4), проходящую через начало координат.

При полном открытии дроссельной заслонки карбюраторного двигателя или при полной подаче топлива дизельного двигателя движение ПА на первой и второй передачах не может быть более скоростей v1 и v2. Скорости v1 и v2 определяются по точкам пересечения (см. рис. 6.6). Для равномерного движения в тех же условиях со скоростью, меньшей v1 или v2, водитель должен прикрыть дроссельную заслонку карбюраторного двигателя или уменьшить подачу топлива дизельного двигателя, что приведет к уменьшению частоты вращения коленчатого вала двигателя и, как следствие, к уменьшению подачи Qн и напора Нн насоса.

Если на ПА установлена коробка отбора мощности (КОМ) с постоянным передаточным числом, то водителю сложно одновременно обеспечить и необходимую скорость движения, и необходимую подачу воды из лафетного ствола. Для того чтобы обеспечить водителю возможность одновременного выбора требуемых скорости движения и подачи воды из лафетного ствола, необходимо или устанавливать КОМ с переменным передаточным числом, или устанавливать на ПА такие двигатели и насосы, в графике мощностного баланса которых кривая 3 на первой и второй передачах не пересекают прямую 4. Метод мощностного баланса удобно использовать при выборе двигателя базового шасси ПА. Использовать этот метод для определения vmax , tυ , аmax, vmin нецелесообразно, так как приходится дополнительно вычислять Рк, Рφ проверять выполнение неравенства (6.11).

6.1.9. Динамическая характеристика пожарного автомобиля

Методы силового и мощностного баланса имеют общий недостаток – при использовании этих методов трудно сравнивать тягово-скоростные свойства АТС с различными массами, так как при движении в одинаковых условиях силы и мощности, необходимые для преодоления сопротивления дороги, различны. От этого недостатка свободен метод динамической характеристики, предложенный Е. А. Чудаковым.

Динамическим фактором D АТС называется отношение

D = (Pк-Pв)/Gg. (6.43)

Если в правую часть уравнения (6.43) подставить значения Pк и Pв (6.4) и (6.21), то после преобразований получим формулу для вычисления динамического фактора:

, (6.44)

который могут обеспечить двигатель и трансмиссия на ведущих колесах АТС.

Если подставить значение Pк (6.37), то получим формулу для вычисления динамического фактора:

, (6.45)

который необходимо обеспечить для движения в заданных условиях.

Чтобы учесть ограничение реализуемых Pк силами сцепления ведущих колес с дорогой, необходимо использовать предельное значение силы тяги по формуле (6.10). Автомобиль из-за ограниченной силы сцепления Pφ колес с дорогой не может реализовать динамический фактор, больший

(6.46)

Длительное движение АТС в заданных дорожных условиях (ψ или α, f) со скоростью v и ускорением j возможно, если выполняется условие

. (6.47)

При равномерном движении (f = 0) полноприводного ПА с малой скоростью (Pв = 0) условие (6.48) с учетом формул (6.40) и (6.46) записывается в виде

.(6.48)

При равномерном движении (j = 0) двухосных и трехосных ПА по горизонтальной дороге (α = 0) с малой скоростью (Pв = 0) условие (6.48) с учетом формул (6.36), (6.39) и (6.46) записывается в виде

(G34/G). (6.49)

Динамической характеристикой автомобиля D(v) называют зависимость динамического фактора D (6.45) от скорости движения на различных передачах.

Для построения динамической характеристики необходимо:

1. На внешней характеристике двигателя Мe (см. рис. 5.9) выбрать несколько значений nдi и соответствующих им Мei. По формуле (6.2) определить Мдi.

2. По формуле (6.40) определить vi , которые соответствуют nдi на первой передаче.

3. По формуле (6.45) определить Di, соответствующие vi на первой передаче. Повторить расчеты с п. 2 для каждой последующей передачи.

По динамической характеристике D(v) определяются vmax , max и vmin.

Для определения vmax на участке дороги с коэффициентом сопротивления качению f и уклоном необходимо по оси ординат динамической характеристики D(v) отложить коэффициент (см. формулу (6.38)), масштаб D и должен быть одинаков) и провести прямую, параллельную оси абсцисс. Возможны несколько случаев.

1. Если линия (прямая 1 на рис. 6.7, а) пересекает динамическую характеристику в одной точке, то vmax= v1, так как при превышении этой скорости не выполняется условие (6.48). В зависимости от это пересечение может быть на любой передаче.

2. Если линия (прямая 2 на рис. 6.7, а или 3 на рис. 6.7, б) не пересекает динамическую характеристику, то равномерное движение ПА при полностью открытой дроссельной заслонке карбюраторного двигателя или при максимальной подаче топлива дизельного двигателя невозможно, так как D > D и начинается разгон ПА. Чтобы обеспечить равномерное движение, водитель должен прикрыть дроссельную заслонку карбюраторного двигателя или уменьшить подачу топлива дизельного двигателя. Максимальная скорость ПА будет ограничена максимально допустимой угловой скоростью коленчатого вала двигателя. Например, vmax= v2 при движении на пятой передаче и vmax= v3 при движении на второй передаче.

5

Dmax

Dmax

8001000

Динамический фактор D

Динамический фактор D



1



3



2

4



v

vmin

v

v2

v1

vmin

v5

v3

v4



б

а



Рис. 6.7.Динамическая характеристика пожарного автомобиля:

а – на шасси АТС с 5-ступенчатой коробкой перемены передач;

б – на шасси с 4-ступенчатой коробкой перемены передач; I -V – передачи

3. Если линия (прямая на рис. 6.7) пересекает динамическую характеристику в двух точках, то ПА может равномерно двигаться как со скоростью v4, так и со скоростью v5.

4. Если линия (прямая 5 на рис. 6.7, б) выше динамической характеристики, то не выполняется условие (6.48), и равномерное движение ПА при таком коэффициенте невозможно.

Для определения max необходимо по динамической характеристике найти максимальное сопротивление дороги D=Dmax, которое может преодолеть ПА на первой передаче (рис. 6.7), и затем по формуле (6.46) вычислить max при известном коэффициенте f и j=0. Приближенно можно считать, используя формулы (6.16) и (6.38), что

tgmax = imax= Dmax - f.(6.50)

Скорость vmin определяется, как правило, только для низшей (первой) передачи (см. рис. 6.7).

Для определения vmin ПА при движении по поверхности с твердым покрытием необходимо знать частичные характеристики двигателя и учитывать использование части крутящего момента двигателя Mд на привод пожарного оборудования, например насоса.

6.1.10. Разгон пожарного автомобиля

Время равномерного движения ПА невелико по сравнению с общим временем следования к месту вызова. При эксплуатации в городах ПА движутся равномерно не более 10 – 15 % времени. Более 40 – 50 % времени ПА движутся ускоренно.

Способность АТС изменять (увеличивать) скорость движения называют приемистостью. Одним из наиболее распространенных показателей, характеризующих приемистость автомобиля, является время tv разгона автомобиля с места до заданной скорости v.

Определяют tv обычно экспериментально на горизонтальной ровной дороге с асфальтобетонным покрытием при коэффициенте = 0,015(f = 0,01, i % 0,5). Аналитические методы определения tv основаны на построении зависимости t(v) (рис. 6.8), т.е. на интегрировании дифференциального уравнения (6.1):

(6.51)

При 0 < v < vmin движение ПА происходит при пробуксовке сцепления. Время разгона tp до vmin зависит в основном от умения водителя правильно выбрать положение педалей сцепления и топлива (см. п. 6.1.1). Так как время разгона tp существенно зависит от квалификации водителя, которую трудно описать математически, то при аналитическом определении tv время tp часто не учитывают.

Разгон ПА на участке АВ происходит на первой передаче при полностью нажатой педали топлива. При максимальной скорости ПА на первой передаче (точка В) водитель выключает сцепление, разобщая двигатель и трансмиссию, и автомобиль начинает двигаться замедленно (участок ВС). Включив вторую передачу, водитель вновь нажимает до отказа педаль подачи топлива. Процесс повторяется при переходах на последующие передачи (участки CD, DE).

Время переключения передач t12, t23 (рис 6.8) зависит от квалификации водителя, способа переключения передач, конструкции коробки передач и типа двигателя. Среднее время переключения передач водителями высокой квалификации приведено в табл. 6.3. У автомобиля с дизельным двигателем время переключения передач больше, так как из-за больших (по сравнению с карбюраторным двигателем) инерционных масс его деталей частота вращения коленчатого вала изменяется медленнее, чем у карбюраторного двигателя.

v

vmin

v12

v23

tp

t12

t23

tv



Рис.6.8. Разгон пожарного автомобиля:

t12, t23 – соответственно время переключения передачи с первой на вторую и со второй на третью; ∆v12 и ∆v23 – уменьшение скорости за время t12 и t23

За время переключения передач скорость ПА уменьшается на v12 и v23 (см. рис. 6.8). Если время переключения передач невелико (0,5 – 1,0 с), то можно считать, что при переключении передач движение происходит с постоянной скоростью.

Таблица 6.3

Тип коробки передач Время переключения передач, с

Карбюраторныйдвигатель Дизельныйдвигатель

Ступенчатая без синхронизатора 1,3–1,5 3–4

Ступенчатая с синхронизатором 0,2–0,5 1,0–1,5

Полуавтоматическая 0,05–0,1 0,5–0,8

Ускорение ПА при разгоне на участках АВ, CD определяется по формуле

, (6.52)

которая получена после преобразования формулы (6.46). Так как с увеличением номера передачи динамический фактор ПА уменьшается (см. рис. 6.7), то максимальные ускорения разгона достигаются на низких передачах. Поэтому водители ПА для обеспечения быстрого разгона при обгоне в городских условиях используют низкие передачи чаще, чем водители других АТС.

6.2. Аварийная безопасность пожарного автомобиля

6.2.1. Тормозные свойства пожарного автомобиля

Тягово-скоростные и тормозные свойства АТС связаны между собой. Чем больше vmax , max и tv , тем лучше должны быть тормозные свойства ПА. Повышенные требования к тормозным свойствам ПА вызваны также и тем, что при следовании к месту вызова с высокой скоростью водители ПА вынуждены в 3 – 5 раз чаще, чем водители других АТС, использовать торможение для обеспечения безопасности движения.

Возможно несколько способов торможения ПА: без использования тормозной системы (движение накатом при следовании ПА к месту вызова используется редко); только тормозной системой; совместно тормозной системой и двигателем; только двигателем (двигатель работает чаще всего в режиме холостого хода с включенным зажиганием или при незначительном нажатии водителем на педаль подачи топлива и включении более низкой передачи, чем перед началом торможения).

Тормозная система ПА служит для замедления его движения, вплоть до полной остановки, и для удержания на месте при стоянке. Тормозное управление ПА включает следующие системы (ГОСТ 22895–77):

рабочую тормозную систему (ножную) – используется при всех режимах торможения для уменьшения скорости и полной остановки ПА;

запасную тормозную систему – используется при отказе рабочей тормозной системы и обеспечивает не менее 30 % эффективности работы по тормозному пути;

стояночную тормозную систему – обеспечивает стоянку автомобиля на уклонах (i % 18);

вспомогательную тормозную систему (тормоз-замедлитель) – используется при длительном торможении на спусках для поддержания постоянной скорости. Вспомогательной тормозной системой должны быть оборудованы ПА с общей массой более 12 т или ПА с общей массой более 10 т, использующие прицепы. Если ПА с общей массой более 3,5 т эксплуатируется в горных условиях, то также используют вспомогательную тормозную систему.

Для оценки эффективности работы рабочей и вспомогательной тормозных систем используют три показателя (ГОСТ 25478–82): тормозной путь Sт, м; установившееся замедление jT , м/с2; время срабатывания тормозов tT, с. Экспериментально установлено, что этими показателями можно достаточно полно характеризовать процесс торможения АТС (рис. 6.9).

v

v0

v1

t1+t2

t3

t4

t0

1

2

j





Рис. 6.9. Торможение пожарного автомобиля:

1 – j(t) ; 2 – v(t)

Время t1 зависит от реакции водителя, от времени, за которое он принимает решение о торможении и переносит ногу с педали управления подачей топлива на педаль тормоза. Время t1 зависит от индивидуальных особенностей и квалификации водителя, обычно t1 = 0,4 – 1,5 с. При расчетах принимают t1 = 0,8 с.

Время t2 зависит от конструкции и технического состояния привода тормозов, от времени, за которое выбирается свободный ход педали тормоза, и управляющее усилие водителя передается к колесным тормозам. У ПА с гидравлическим приводом тормозов t2 = 0,2 – 0,4 с, с пневматическим приводом t2 = 0,6 – 0,8 с. Время t2 неисправного гидравлического привода (при наличии воздуха в системе или неисправности клапанов в главном тормозном цилиндре) увеличивается, тормоза срабатывают со второго (t2 = 0,6 с) или третьего (t2 1,0 с) нажатия. Время t2 тормозов ПА с пневматическим приводом может увеличиваться зимой после продолжительной работы на пожаре из-за уменьшения сечения трубопровода замерзающим конденсатом. У ПА с гидропневматическим приводом тормозов (например, на шасси «Урал») t2 0,4 с. Время t2 всех приводов уменьшается при более быстром нажатии на педаль тормоза.

Время t3 зависит от массы ПА, типа и состояния дорожного покрытия. При экстренном торможении время t3 пропорционально массе ПА и коэффициенту , на дорогах с малым масса ПА на время t3 практически не влияет.

Время tт = t2 + t3 является одним из трех показателей эффективности работы тормозной системы и определяется при диагностировании ПА на тормозном стенде. Для ПА с 3,5 т < G < 12 т время tт 1 с, для ПА сG > 12 т tт < 1,2 с (ГОСТ 25478–82). Контролировать tт при ходовых испытаниях ПА сложно.

Время t4 представляет собой время торможения с максимальным ускорением (замедлением) jт За время t4 кинетическая энергия АТС расходуется в основном на работу сил трения тормозов и частично на работу сил сопротивления движению (Рf, Рв). Если при торможении колеса заблокированы (не вращаются), то работа сил трения происходит только между шиной и поверхностью дороги. Трение в тормозном механизме как поглотитель энергии АТС при блокировке колес уже не действует. Если колеса АТС заблокированы, то после преобразования уравнения (6.1) при = 1, Рк= 0, Рf = Р, Рi = Pв = 0 с учетом формулы (6.40) получим формулу

jт = g (6.53)

для определения максимального замедления автомобиля при торможении всеми колесами. Так как при увеличении буксования колес уменьшается (см. рис. 6.3), то для увеличения jт и, следовательно, уменьшения Sт достигать полной блокировки колес при торможении нежелательно.

При торможении ПА сила инерции Pj (6.24) увеличивает нагрузку на передние колеса и уменьшает на задние. Наибольшие значения коэффициентов изменения нормальной реакции ПА находятся в следующих пределах (6.35) и (6.36): 12 =1,2 – 2,0; 34 = 0,5 – 0,7. Поэтому для обеспечения торможения с jт необходимо такое распределение тормозных усилий между передними и задними колесами, при котором блокировка колес происходит одновременно. Так как современные тормозные системы ПА не обеспечивают точного соответствия между нормальной реакцией Rn колес и их тормозных усилий, то действительное значение jт меньше теоретически возможного в Кэ = 1,4 – 1,6 раз.

Тормозной путь Sт при полной блокировке колес определяется как площадь, ограниченная кривой 1 за время t3 + t4 (см. рис. 6.9), т. е.

+



=

(6.54)

После преобразования формулы (6.54) с учетом формулы (6.53) иtт 1 – 1.2 с формула для определения тормозного пути ПА примет вид:

Sт = (Кэ/2) , (6.55)

где v0 – скорость автомобиля перед торможением, м/с.

Для предварительной оценки эффективности работы рабочей и запасной тормозных систем ПА проводят ходовые испытания. Испытания могут проводиться визуально по Sт и синхронности начала торможения колес при резком однократном нажатии на педаль (сцепление выключено), а также с использованием переносных приборов-деселерометров (или деселерографов). Диагностирование по тормозному пути Sт должно проводиться на ровном, сухом, горизонтальном участке дороги, свободном от движущегося транспорта. В соответствии с ГОСТ 25478–82 тормозной путь определяется при v0= 11,1 м/с (40 км/ч). Для ПА с G=3,5 т рабочая тормозная система должна обеспечить Sт 23 м, запасная – Sт 36,9 м.

При отсутствии деселерометра (или деселерографа) ускорение jт вычисляется по формуле

jт = v02/Sт, (6.56)

где v0 в м/с; Sт в м.

Для ПА с G > 3,5 т рабочая тормозная система должна обеспечитьjт 4,0 м/с2, запасная – jт 2,1 м/с2.

Тормозной путь Sт и установившееся замедление jт должны обеспечиваться тормозными системами ПА с G > 3,5 т при усилии на педали тормоза не более 0,7 кН (70 кгс).

Стояночная тормозная система должна обеспечивать стоянку ПА на уклоне i < 18 % при усилии на рычаге тормоза не более 0,4 кН (40 кгс).

Вспомогательная тормозная система должна обеспечивать движение ПА на спуске с i = 7 % протяженностью 7 км с постоянной скоростью не более 30 км/ч.

6.2.2. Устойчивость и управляемость пожарного автомобиля

Тягово-скоростные свойства ПА определяют потенциальную, т.е. предельно возможную скорость следования ПА к месту вызова. Устойчивость и управляемость ПА ограничивают vmax в зависимости от дорожных и транспортных условий.

Устойчивость АТС – способность АТС сохранять заданное водителем движение. Показатели устойчивости ПА характеризуют только возможности АТС без учета возможностей водителя по управлению автомобилем для реализации задаваемого движения.

Управляемость АТС – способность АТС реагировать на воздействие водителя на органы управления (руль, педаль муфты сцепления, педаль тормоза, рычаг коробки передач). Показатели управляемости АТС характеризуют поведение системы автомобиль – водитель.

Единых оценочных показателей устойчивости и управляемости АТС нет. «Исключить» водителя удалось только при одном виде испытаний на устойчивость – опрокидывание АТС на наклонной платформе. При всех других видах испытаний АТС на устойчивость и управляемость фактически оценивается поведение системы автомобиль – водитель. Поэтому сейчас принято говорить об устойчивости управления АТС, которую классифицируют:

По виду потери устойчивости управления (рис. 6.10, а, б, в): продольная; поперечная.

v



j







(Gg)



(Gg)n

Pj



H

H

Gg





Pφ2



Pφ12

R34



Pφ1

Gg





R12



R34





B

β

R24





б

a



j





R13

R13

R24



Pj





Gg



H







Pφ24





B





в



Рис. 6.10. Потеря устойчивости управления автомобилем:

а – на уклоне (продольная); б – на уклоне (поперечная); в – на повороте (поперечная)

По результату (проявлению) потери устойчивости управления (рис. 6.10):

опрокидывание (проявление – разгрузка колес одной оси или стороны автомобиля);

занос – скольжение колес относительно опорной поверхности, не выполняется условие (6.9);

отклонение от траектории движения (рис. 6.11, а) – траекторная устойчивость управления АТС;

отклонение от курса (направления) движения (рис. 6.11, б) – курсовая устойчивость управления АТС

2

4

T

1

3





2

3

2

4

1

б

а



1

к

2



Рис. 6.11. Потеря устойчивости управления автомобилем:

а – траекторией; б – курсом; ВК – ширина разметки полосы движения; ∆1 – поперечное смещение; ∆2 – угловое смещение; 1 – центр полосы движения; 2 – разметка;3 – автомобиль до потери устойчивости управления; 4 – автомобиль при потереустойчивости управления

По режиму движения, при котором наступила потеря устойчивости управления АТС: статическая, динамическая.

Устойчивость ПА против опрокидывания. Опрокидывание ПА может произойти из-за действия поперечной составляющей силы веса (Gg)τ при движении по косогору или из-за действия силы инерции Pj при движении на повороте. Опрокидывание ПА наступает при разгрузке колес одной стороны автомобиля, т. е. при R13 = 0 (рис. 6.10, б, в). Поэтому для движения ПА по косогору и на повороте необходимо выполнение соответственно двух условий:



; (6.57)

. (6.58)

Так как

(Gg)n = Gg cos, (6.59)

(Gg) = Gg sin, (6.60)

Pj= G (v2/R) (6.61)

(R – радиус поворота ПА), то для движения ПА без опрокидывания необходимо выполнение условий:

tg B/2H;(6.62)

v

, (6.63)

которые получены соответственно из формул (6.57) и (6.58).

Отношение

К=В/2 Н(6.64)

называют коэффициентом устойчивости автомобиля против опрокидывания. Для определения К автомобиль устанавливают на наклонную платформу (см. рис. 6.10, б), замеряют угол , при котором произошла разгрузка колес одной стороны автомобиля, и затем по формуле (6.63) определяют численное значение K.

Неравенства (6.58) и (6.59) составлены без учета деформации шин, подвески и кузова АТС, поэтому значения К, вычисленные по экспериментальному значению , на 10 – 15 % меньше, чем определенные по формуле (6.64). При определении коэффициента К пожарных автоцистерн необходимо учитывать также уменьшение К из-за смещения центра масс жидкости относительно цистерны при частичном ее заполнении. Если масса жидкости составляет не более 30 % от общей массы ПА, то уменьшение коэффициента К не превышает 5 – 7 % и определить его экспериментально сложно. Поэтому для оценки эффективности мероприятий по обеспечению безопасности движения пожарных автоцистерн необходимо использовать другие виды испытаний на устойчивость управления АТС. Такими видами испытаний являются «поворот» и «переставка» (рис. 6.12).

При испытании «поворот» водитель ПА постепенно, от заезда к заезду, увеличивает скорость движения по прямой 1–2 (рис.6.12, а). На участке 2–3 водитель должен, не снижая скорости, пройти дугу поворота радиусом R = 30 – 60 м. При испытании фиксируется скорость, при которой на участке 2–3 происходит или отрыв колес одной стороны ПА от дороги, или занос, или выход ПА из коридора безопасности (под коридором безопасности понимается ширина разметки проезжей части дороги на повороте 30 – 60 м).

3

4

3

2

2

4

1









а

б



Рис. 6.12. Определение предельной скорости пожарного автомобиля:

а – на повороте; б – при смене полосы движения (обгоне); 1–2 – прямолинейноедвижение с – v-const; 2–3 – переходной участок; 3–4 – движение с постояннойскоростью и углом поворота управляемых колес

При испытании «переставка» имитируется обгон или объезд ПА внезапного препятствия. Испытания проводятся аналогично испытанию «поворот», но на участке с иной разметкой (рис. 6.12, б). Испытание при длине «переставки» Lп=12 м имитирует обгон в городских условиях движения, Lп=20 м при движении за городом.

Испытания «поворот» и «переставка» проводятся на специально оборудованных площадках автомобильных полигонов водителями, прошедшими курс специальной подготовки.

Устойчивость ПА против заноса. Занос ПА может произойти из-за действия поперечной составляющей силы веса (Gg) при движении по косогору или из-за действия силы инерции Рj при движении на повороте.

Занос колеса ПА наступает при невыполнении неравенства (6.63). Если Рк=Хn=0, то, чтобы избежать бокового скольжения колес по косогору и при повороте, необходимо выполнение соответственно двух условий:

(Gg) (Gg)n;(6.65)

Рj G. (6.66)

После преобразований формул (6.65) и (6.66) с учетом формул (6.59), (6.60) и (6.61) условия движения без заноса записываются в виде

;(6.67)

v

. (6.68)

Сравнение формул (6.62) и (6.67) и формул (6.63) и (6.68) позволяет заключить, что в большинстве случаев занос ПА будет предшествовать его опрокидыванию ( < K). Следовательно, опрокидывание ПА в реальных условиях может произойти при углах косогора и скоростях меньших, чем определенных экспериментально на стенде опрокидывания и при испытаниях «поворот» и «переставка». Поэтому угол косогора, который разрешается преодолевать ПА, уменьшается вдвое, т. е. [] < 0,5.

При наличии продольной силы Xn (см. рис. 6.2) вероятность бокового скольжения колеса увеличивается, так как часть силы сцепления Рn использована силой тяги Рк или торможения Рт колеса. Поэтому при движении в режиме, предшествующем буксованию ведущих колес или блокировке колес при торможении, достаточно незначительной боковой силы для потери поперечной устойчивости ПА. Так как у большинства ПА ведущими являются колеса задней оси, то для устранения заноса заднего моста ПА при повороте или торможении необходимо уменьшить касательную реакцию Хп на ведущих колесах, отпустив педаль подачи топлива или прекратив торможение, и повернуть колеса в сторону начавшегося заноса. Вся сила сцепления Рn будет реализовываться для предотвращения бокового скольжения Yn – занос прекратится. Сразу же после прекращения заноса управляемые колеса следует повернуть в нейтральное положение.

Потеря устойчивости управления в результате отклонения от траектории движения (см. рис. 6.11, а) наблюдается, как правило, при движении ПА со скоростью, близкой к vmax. Предельной скоростью [vт] по траекторной устойчивости управления считается скорость, после превышения которой водитель не может на прямой дороге обеспечить движение ПА в коридоре безопасности (внутри разметки на дороге полосы движения). На дорогах с ровным асфальтобетонным покрытием конструкция всех исправных ПА обеспечивает vmах < [vт]. Появление [vт] < vmax возможно только у технически неисправных ПА или у пожарных автоцистерн с частичным заполнением цистерны. Основные причины уменьшения [vт]: неправильная установка управляемых колес ПА, дисбаланс (неуравновешенность) управляемых колес, незначительный разворот одной оси ПА из-за «проседания» рессор с одной стороны автомобиля, различие между давлениями шин колес одной оси (уменьшение давления в шине меньше номинального).

Потеря устойчивости управления в результате отклонения от курса (направления) движения (рис. 6.12, б) наблюдается при движении со скоростью, близкой к vmax, и при торможении. Предельной скоростью [vк] по курсовой устойчивости управления считается скорость, после превышения которой водитель не может обеспечить движение ПА в коридоре безопасности. С увеличением длины ПА требования к курсовой устойчивости управления ужесточаются, так как выход части автомобиля за пределы коридора безопасности появляется при меньших углах отклонения от курса. Причины ухудшения курсовой устойчивости управления при движении по прямой ровной дороге те же, что и для [vт]. Основное внимание при обеспечении курсовой устойчивости управления необходимо уделять исправности тормозной системы.

При скорости [vк] на торможение ПА оказывает влияние соотношение между тормозными усилиями колес и последовательностью срабатывания тормозов. Тормозные усилия колес одной оси ПА должны быть равны, их срабатывание должно быть одновременным. Раннее включение тормозов передней оси ПА позволяет уменьшить Sт из-за лучшего использования максимальной силы сцепления при увеличении нагрузки на передние колеса при торможении, но уменьшает [vк], т. е. увеличивает вероятность заноса задней оси, особенно на дорогах с малым коэффициентом сцепления .

Обеспечение [vт] > vmax и [vк] > vmax при эксплуатации ПА зависит от систематического контроля за техническим состоянием шин, ходовой части и рулевого управления.

6.3. Проходимость и маневренность пожарного автомобиля

Проходимость – способность ПА двигаться по заснеженным, мокрым и плохим (разбитым, размокшим) дорогам, бездорожью и преодолевать естественные (подъемы, спуски, косогоры) или искусственные препятствия без вспомогательных средств.

Маневренность – способность ПА поворачиваться (маневрировать) на минимальной площади.

Единого показателя, характеризующего проходимость и маневренность ПА, не существует. Проходимость и маневренность ПА зависит от его геометрических размеров и опорно-тяговых свойств, а также от конструкции трансмиссии (дифференциала, коробки передач) и механизма поворота управляемых колес.

По проходимости АТС делятся на дорожные (обычной проходимости), повышенной и высокой проходимости.

К дорожным относят АТС, предназначенные для преимущественного использования на дорогах с твердым покрытием. Обычно эти АТС являются неполноприводными (с колесной формулой 42);

62; 64 – первая цифра соответствует общему числу колес АТС, вторая – числу ведущих колес) с колесами дорожного рисунка шин и с простыми (неблокируемыми) дифференциалами.

Автомобильные транспортные средства повышенной проходимости предназначены для движения по дорогам с твердым покрытием, вне дорог и для преодоления естественных препятствий. Обычно эти АТС являются полноприводными (с колесной формулой – 44; 66 и т.д.), имеют тороидные или широкопрофильные (реже арочные) шины с системой регулирования давления воздуха. В трансмиссиях этих АТС часто применяют блокируемые дифференциалы.

Автомобильные транспортные средства высокой проходимости создаются для преимущественного использования вне дорог. Эти АТС имеют полный привод ведущих колес и специальные шины (шины сверхнизкого давления, пневмокатки).

Различают профильную и опорно-тяговую проходимость. Профильная проходимость характеризует способность АТС преодолевать неровности пути, препятствия и вписываться в дорожные габариты. Опорная проходимость – способность АТС двигаться по деформируемым грунтам.

Показатели профильной проходимости (рис. 6.13):

дорожный просвет h, м;

передний l1 и задний l2 свесы, м;

передний 1 и задний 2 углы свеса (или угол 1 въезда и угол 2 съезда), град.;

радиусы продольной R1 и поперечной R2 проходимости, м;

наибольший угол преодолеваемого подъема max;

наибольший угол преодолеваемого косогора ;

ширина преодолеваемого рва lр;

высота преодолеваемой вертикальной стенки (эскарпа).

2

l2

R1

l1

2

R2

h1



Рис. 6.13. Показатели профильной проходимости

Дорожный просвет h (расстояние от нижней точки автомобиля до опорной поверхности) определяет возможность движения ПА по мягкому грунту и через единичные препятствия (камни, пни, кочки и т.д.). Чем больше h, тем лучше проходимость ПА. У ПА повышенной и высокой проходимости дорожный просвет h больше, чем у ПА на базе дорожных АТС. С увеличением грузоподъемности дорожный просвет h обычно увеличивается.

От свеса l1 и l2 зависит проходимость ПА при преодолении канав, кюветов. Чем меньше l1 и l2 , тем меньше вероятность «вывешивания» колес при преодолении препятствий.

Углы свеса 1 и 2 влияют на возможность преодоления ПА препятствий с короткими подъемами и спусками. Чем больше 1 и 2 , тем больше крутизна коротких неровностей, через которые может переехать ПА, не задевая за неровность при въезде и съезде.

Продольный радиус проходимости R1 равен радиусу сегментного препятствия (с хордой, равной базе L АТС), через которое ПА может переехать поперек, не задевая нижней точкой, расположенной в средней части. Чем меньше R1, тем выше проходимость ПА, т.е. способность преодолевать местность с гребнистыми препятствиями (насыпи, бугры).

Поперечный радиус проходимости R2 равен радиусу сегментного препятствия (с хордой, равной базе в АТС), через которое ПА может переехать вдоль, не задевая нижней точкой, расположенной между колесами. Чем меньше R2 , тем лучше проходимость ПА при преодолении насыпей и борозд вдоль.

На профильную проходимость длинномерных ПА (автолестниц, автоподъемников) влияет соотношение между габаритными размерами: длиной Lг, высотой Hг и шириной Вг. Соотношение между высотой Нг и длиной Lг определяет проходимость под мостами или эстакадами (рис. 6.14).

L



[H]





Рис. 6.14. Влияние габаритов пожарного автомобиля на его продольную проходимость

При определении проходимости ПА под мостом необходимо убедиться в обеспечении Hг < Н на всей габаритной длине Lг автомобиля, так как при вогнутой дороге и большой длине Lг возможная для проезда высота уменьшается (рис. 6.14).

Показатели опорно-тяговой проходимости:

максимальная сила тяги Рк max;

максимальный динамический фактор Dmax ;

коэффициент сцепления шин с дорогой ;

нагрузка на ведущие колеса (сцепной вес) Gв;

давление колес на дорогу р.

Для увеличения проходимости ПА необходимо увеличивать Dmax и (см. п. 6.1). Сцепной вес ПА можно увеличить, если увеличить число ведущих колес (использовать полноприводное базовое шасси) или сместить центр масс ПА в сторону ведущего моста.

Основным показателем опорно-тяговой проходимости ПА по дорогам с мягким покрытием является давление колес на дорогу:

(6.69)

где Rn – нагрузка, воспринимаемая колесом, Н; Sn – площадь контакта колеса с дорогой, м2.

Давление р современных ПА изменяют от 50 кПа (0,5 кг/см2) при движении по мягким грунтам до 300 кПа (3 кг/см2) при движении по дорогам с твердым покрытием. Лучшую проходимость имеют ПА с регулируемым давлением воздуха в шинах. Обычно для улучшения проходимости ПА необходимо уменьшить давление, но при движении по некоторым грунтам, наоборот, увеличивать.

Уменьшение давления воздуха в шине влияет также на коэффициент сцепления φ (см. табл. 6.1). Увеличения коэффициента на мягких грунтах добиваются обычно уменьшением р, т.е. увеличением площади контакта шины с грунтом. Увеличения коэффициента на дорогах с твердым основанием (например, асфальтобетонное шоссе, покрытое грязью, или неглубокие снежные заносы на дороге) добиваются увеличением р.

Показатели маневренности (рис. 6.15):

минимальный радиус поворота наружного переднего колеса Rн;

ширина полосы движения А при повороте;

максимальный выход отдельных частей ПА за пределы траекторий движения наружного переднего и внутреннего заднего колес (расстояния a и b).

а

b

Rb

RH

А



Рис. 6.15. Показатели маневренности одиночного автомобиля

Наиболее маневренны ПА со всеми управляемыми колесами. При буксировке прицепа маневренность ПА ухудшается, так как при повороте увеличивается ширина полосы движения А.

Глава 7

НАСОСНЫЕ УСТАНОВКИ

Насосные установки состоят из пожарного насоса, привода к нему и органов управления, а также системы трубопроводов и специальной арматуры. Трубопроводы и арматура образуют водопенные коммуникации. Они составляют систему, обеспечивающую регулирование величин подачи насосов и развиваемого ими напора. Насосная установка является главной частью пожарной надстройки, во многом определяющей компоновку автоцистерн.

7.1. Требования к насосным установкам

К насосным установкам пожарных автомобилей предъявляется ряд специфических требований, обусловленных НПБ 163-97, способствующих обеспечению эффективной подачи воды при эксплуатации насоса в различных условиях работы и в различных режимах.

Изложенные требования являются основными, а по желанию заказчика они могут быть изменены или устранены.

Установленные на автоцистернах насосы и системы к ним должны обеспечивать подачу воды и раствора пенообразователя с водородным показателем (рН от 7 до 10, плотностью 1000 кг/м3 и массовой концентрацией твердых частиц до 0,5 % при максимальном размере 3 мм).

Привод насоса передает мощность от двигателя к насосу через дополнительную трансмиссию. Во избежание перегрева двигателя потребляемая мощность насосной установки не должна превышать 70 % номинальной мощности двигателя.

Привод должен обеспечивать работу насоса во время стоянки и в движении. Он должен обеспечить включение насоса при холостых оборотах двигателя и выключение при частичной нагрузке на насос.

Насосная установка может размещаться в специальном кормовом отсеке (заднее размещение) или в средней части автомобиля (в салоне). При заднем расположении насосной установки должен предусматриваться обогрев насосного отсека для предотвращения замерзания воды в насосе или трубопроводах в зимних условиях. В различных условиях эксплуатации насосная установка должна эффективно работать без перегрева привода насоса в течение не менее 6 ч.

Специальные требования предъявляются к органам управления насосной установкой. Рукоятки (рычаги) на пульте управления вне кабины боевого расчета должны располагаться слева направо:

рычаг включения вакуумного насоса;

рычаг выключения сцепления;

рычаг регулирования частоты вращения вала насоса.

При расположении насоса в задней части автомобиля органы управления должны быть размещены с левой стороны по ходу движения ПА.

7.2. Арматура водопенных коммуникаций пожарных автоцистерн

Управление потоками огнетушащих веществ в водопенных коммуникациях пожарных автоцистерн производят с помощью вентилей. Оно может осуществляться вручную или устройствами с гидравлическим или пневматическим приводом.

На автоцистернах применяются различные типы конструкций вентилей: краны, вентили трубопроводные, задвижки. При обозначении вентилей указываются его тип, максимальное значение диаметра проходного отверстия. Например, кран Ду-20 означает, что этот вентиль – кран с условным диаметром, равным 200 мм.

Устройство крана Ду-20 показано на рис. 7.1. В таком положении трубопровод не перекрыт. При повороте рукоятки 8 будет вращаться шток 5 и соединенный с ним шар 2 с отверстием. При этом будет перекрываться проходное отверстие между отверстием в шаре и отверстиями в коропусе 1 и штуцере 12. Это приведет к уменьшению количества перетекающей жидкости в единицу времени. При повороте рукоятки на 90о отверстие в шаре будет расположено перпендикулярно отверстию в корпусе 1 и штуцере 12. Трубопровод будет перекрыт. Краны используют, главным образом, для перекрытия трубопроводов.

Вентили трубопроводные применяют для регулирования количества перетекающей жидкости по трубопроводам и их перекрытия. Устройство наиболее простого вентиля показано на рис. 7.2. При вращении маховика 5 клапан 7 будет открывать проходное отверстие в корпусе 1. По мере его открытия будет увеличиваться количество перетекающей жидкости.

1

2

3

4

5

6

7

8

9

10

11

12

13

Рис. 7.1. Кран Ду-20:

1–корпус; 2 – шар; 3,4,10,13 – уплотнительные кольца; 5 – шток; 6 – штифт; 7 – шайба фиксатора; 8 – рукоятка; 9 – втулка; 11 – регулировочная прокладка; 12 – штуцер

Рис. 7.2. Вентиль водопроводный:

1 – корпус; 2 – цапка; 3, 4 – крышки;5 – маховик; 6 – шпиндель; 7 – клапан

1

2

3

4

5

6

7



В вентилях перекрытие проходного отверстия осуществляется с помощью клапана. В технической документации на пожарную технику вентили называют клапанами, если они кроме ручного управления имеют устройства для пневмо- или гидропривода, и задвижками, если привод ручной.

На автоцистернах устанавливают винтовые задвижки (вентили) с условным проходом 70, 40 и 15 мм (Ду-70, Ду-40 и Ду-15). Их устройство показано на рис. 7.3. При вращении маховика 5 шпиндель 7 перемещается в латунной гайке 4. Она зафиксирована в крышке 6 двумя винтами. На нижнем конце шпинделя 7 имеется выточка вокруг его тела. В нее вставлены два полукольца, которые фланцем 8 двумя винтами закреплены сверху клапана. Поэтому при вращении шпинделя клапан не вращается. Этим обеспечивается надежная посадка клапана на седло и предотвращаются разрушения резиновой прокладки 9.

Клапаны применяются на автоцистернах, где предусмотрено гидравлическое или пневматическое управление водопенными коммуникациями. Клапан Ду-80 (рис. 7.4) служит для открывания и закрывания трубопровода, обеспечивающего поступление воды из цистерны в насос. В цилиндре 6 перемещается поршень 5 с уплотнительными кольцами 4. На штоке поршня устанавливается клапан 11. Его устройство аналогично винтовой задвижке. Поршень 5 отжимается пружиной 9 в нижнюю часть цилиндра. Управление клапаном может осуществляться вручную или сжатым воздухом.

11

1

2

3

4

5

6

8

9

10

7

Рис. 7.4. Клапан Ду-80:

1 – корпус; 2 – штуцер; 3, 4 – кольца; 5 – поршень; 6 – цилиндр; 7 – маховик; 8 – крышка; 9 – пружина; 10 – шпиндель;11 – клапан

Рис. 7.3. Винтовая задвижка:

1 – корпус; 2 – клапан; 3 – паронитовая прокладка; 4 – гайка; 5 – маховик;6 – крышка; 7 – шпиндель; 8 – фланец;9 – резиновая прокладка

1

2

3

4

5

6

7

8

9



Ручное управление осуществляется при вращении маховика 7 по часовой стрелке. Он соединен со шпинделем 10, имеющим резьбу. При вращении он будет перемещаться по резьбе втулки, закрепленной в верхней части крышки 8. Шпиндель 10, упираясь утолщенной частью в торец втулки, зафиксированной во внутренней полости хвостовика поршня, будет перемещать поршень и клапан 11. Вода при этом будет поступать из цистерны к насосу. При вращении маховика 7 против часовой стрелки клапан перекроет доступ воды из цистерны в насос.

Управление сжатым воздухом осуществляется при поступлении воздуха через штуцер 2 в цилиндр 6. Под давлением сжатого воздуха поршень 5 будет перемещаться вверх, сжимая пружину 9, и поднимет клапан 11. При стравливании воздуха из цилиндра под действием разжимающейся пружины поршень будет перемещаться вниз и закроет отверстие. Аналогично описанному устроен клапан Ду-32, применяемый для включения баков с пенообразователем. Они различаются только диаметрами проходных сечений, закрываемых клапанами.

Клапаны Ду-80 и Ду-32 открываются с помощью сжатого воздуха. Поэтому, если они были открыты вручную, управление ими с помощью сжатого воздуха невозможно.

Водопенные коммуникации. Пожарные насосы, цистерны и баки для огнетушащих веществ на пожарных автоцистернах соединены системой трубопроводов с перекрывной арматурой. Образовавшуюся систему называют водопенными коммуникациями (ВПК).

ВПК обеспечивают выполнение следующих функций:

заполнение цистерны водой из водоема, от гидранта, а также из других цистерн;

подачу воды в рукавные линии или лафетный ствол при ее заборе из цистерны, гидранта, водоема;

подачу пенообразователя из пенобака к смесителю;

подачу раствора пенообразователя в рукавные линии, лафетный ствол;

забор пенообразователя из другой цистерны;

забор пенообразователя из цистерны, если она заполнена им вместо воды;

промывку водой системы подачи пенообразователя.

К насосу и ВПК предъявляются ряд общих требований. Они должны выдерживать статическое пробное давление не менее 1,5 Рном в течение трех минут без разрушений и остаточных деформаций. В системе и цистернах должен полностью обеспечиваться слив воды и удаление пенообразователя.

Принципиальные схемы ВПК на всех автоцистернах практически одинаковы. На различных автоцистернах они могут иметь разное конструктивное исполнение. Управление водопенными коммуникациями может осуществляться заслонками или вентилями. В последнем случае их привод может быть смешанным, т.е. он может осуществляться вручную или с помощью пневмо- или гидропривода. В зависимости от типа установленного пожарного насоса могут использоваться различные вакуумные насосы. На АЦ могут отсутствовать отдельные элементы, например лафетные стволы и т.д.

Принципиальная схема ВПК автоцистерн представлена на рис. 7.5. Насос 1 соединен серией трубопроводов с цистерной 6, пенобаком 4, лафетным стволом 5. Они при включении находящихся на них задвижек, клапанов и вентилей обеспечивают выполнение всех функций ВПК.

д

3

4

5

6

а

з

7

1

в

г

2

б

ж

е

Рис. 7.5. Принципиальная схема водопенных

коммуникаций автоцистерн:

1 – пожарный насос; 2 – пеносмеситель;3 – тройник; 4 – пенобак; 5 – лафетный ствол; 6 – цистерна; 7 – напорная задвижка;В – вакуумметр; М – манометр

Подача воды из цистерны. При открытом вакуумном кране д и вентиле на трубопроводе а вода заполняет насос 1. Перекрыв вакуумный кран и открыв задвижку 7, если к патрубку присоединены напорные рукава, возможно включать насос 1 и подавать воду к стволу.

Путь воды: 6, а, б, 1, 7, рукавная линия.

Подача воды из открытого водоема или водопроводной сети. Путь воды: всасывающие рукава, б, 1, 7 или б, 1, 7, е, 5 или б, 1, ж, 6.

Подача пенообразователя из бенобака 4. При включенных вентиле на трубопроводе г и кране на пеносмесителе 2 включится в работу струйный насос пеносмесителя водой, поступающей из коллектора насоса 1. Пенообразователь по трубопроводу г поступит к пеносмесителю 2 и далее во всасывающий трубопровод б. Раствор пеносмесителя из насоса 1 может поступать в лафетный ствол 5 или через задвижки 7 к рукавным линиям.

При закрытом вентиле на трубопроводе г пенообразователь может поступать в насос от другой цистерны, подсоединенный к штуцеру тройника 3.

Промывка системы подачи пены. Промывка системы может осуществляться при включенном вентиле на трубопроводе з водой из цистерны 6. Путь воды: 6, з, г, б, 1, 7, рукавная линия (или лафетный ствол). При этом из насосной установки будут удалены остатки пенообразователя.

Промывка насосной установки может быть осуществлена и водой, подаваемой из другой емкости в штуцер тройника 3 на трубопроводе г.

Управление работой насосной установки и контроль ее функционирования осуществляются рядом приборов. К ним относятся: вакуумметр М, тахометр для измерения частоты вращения вала насоса, термометр и часы. На различных автоцистернах устанавливается разное число контрольно-измерительных приборов.

Водопенные коммуникации разных пожарных автомобилей и насосов имеют конструктивные и монтажные особенности, принципиальные же их схемы одинаковы. Управление водопенными коммуникациями в большинстве случаев ручное. Их устройство и управление ими рассмотрим на принципиальных схемах некоторых ПА.

7.3. Водопенные коммуникации АЦ

Водопенные коммуникации всех АЦ принципиально одинаковы, они выполняют одинаковые функции. В них используется идентичная арматура. Однако они имеют ряд конструктивных особенностей, которые ниже будут рассмотрены на АЦ прежнего и нового поколения.

7

12

11

10

13

18

16

17

15

14

8

5

6

3

2

1

19

20

9

4

Водопенные коммуникации пожарной автоцистерны АЦ-40(131)137. Принципиальная схема водопенных коммуникаций представлена на рис. 7.6. При рассмотрении работы коммуникаций будем использовать только ручной привод. В исходном положении все вентили, краны и задвижки должны быть закрыты.

Рис. 7.6. Принципиальная схема водопенных коммуникаций АЦ-40(131)137:

1 – масленка; 2 – пеносмеситель; 3, 17 – заглушка; 4 – крестовина; 5 – вентиль; 6 – кран;13 – клапан; 7 – пенобак; 8 – вакуумный кран; 9 – коллектор; 10 – цистерна; 11 – распределительный клапан; 12 – лафетный ствол; 14, 15 – задвижки; 16 – напорная труба; 18 – пожарный насос; 19 – всасывающий патрубок; 20 – заглушка

В системе ВПК этой автоцистерны имеется распределительный клапан. Его устройство показано на рис. 7.7. Он предназначен регулировать подачу воды насосом в цистерну или лафетный ствол.

1

2

3

4

5

6

7

8

9

К лафетному

11

10

11

стволу

Воздух

Вода

12

Воздух



Рис. 7.7. Распределительный клапан:

1 – патрубок; 2 – седло; 3 – клапан; 4 – седло; 5 – корпус; 6 – манжеты; 7 – гайка; 8 – цилиндр; 9 – поршень; 10 – уплотнительное кольцо; 11 – пробка; 12 – масленка

В положении клапана 3, указанном на рисунке, вода, подаваемая насосом, будет поступать в лафетный ствол. При подаче воздуха под давлением в надпоршневое пространство цилиндра 8 поршень 9 переместится в левую сторону. При этом клапан 3 войдет в контакт с седлом 2 и вода из насоса будет поступать в цистерну.

На АЦ этого и другого типа устанавливают лафетные стволы для подачи воды и воздушно-механической пены на большие расстояния до 60 м.

Лафетные стволы могут подавать до 60 л/с воды и до 25 м3/мин пены. Лафетный ствол ПЛС-20, установленный на АЦ-40(131)137, – 20 л/с и до 10 м3 /мин пены кратностью до 10.

Лафетный ствол ПЛС-20 (рис. 7.8) устроен следующим образом. Разветвление 8 с помощью стальных втулок 10 с фланцами установлено на тройнике 9. Ствол, вращаясь вокруг горизонатальной оси, перемещается также и в вертикальной плоскости. Внутри разветвления 8 размещен золотник 7. Он уплотняется втулками 13 из фторопласта. С помощью рукоятки 11 посредством хвостовика 12 золотник 7 поворачивается на 90о. В положении, указанном на рисунке, вода поступает в ствол 4. Она может подаваться через насадки 1 с диаметром спрысков, равным 19 и 25 мм. Возможна подача воды через сменную насадку с диаметром спрыска38 мм. Успокоитель 5 (стальная труба) служит для формирования потока струи. При необходимости подавать воздушно-механическую пену золотник следует повернуть на 90о. Вода с пенообразователем будет поступать в воздушно-пенный ствол 2 через втулки-распылители 6. Воздух будет эжектироваться через раструб ствола 2 и образовывать пену.

1

2

3

4

5

6

7

8

9

10

11

12

13



Рис. 7.8. Лафетный ствол:

1 – сменная насадка; 2 – воздушно-пенный ствол; 3 – насадка; 4 – ствол;5 – успокоитель; 6 – втулки-распылители; 7 – золотник; 8 – разветвление;9 – тройник; 10 – стальная втулка; 11 – рукоятка; 12 – хвостовик;13 – уплотнительные втулки

Управление лафетными стволами обеспечивается механизмом поворота и механизмом подъема. Механизм поворота обеспечивает поворот лафетного ствола в горизонтальной плоскости на 130о в обе стороны. Механизм подъема лафетного ствола служит для обеспечения движения в вертикальной плоскости на угол в пределах от –8 до +75о от горизонтали.

Заполнение пожарного насоса водой из цистерны (см. рис. 7.6) производится по трубопроводу при открытом клапане 13 типаДу-80, а из открытого водоема – с помощью всасывающих рукавов, подсоединяемых к всасывающему патрубку насоса 18. Забор воды из водопроводной сети производится колонкой, установленной на гидрант. Разрежение во всасывающей полости создается газоструйным вакуумаппаратом, который соединяется со всасывающей полостью вакуумным краном 8. От коллектора 9 по трубопроводу при открытой винтовой задвижке 14 вода подается в распределительный клапан 11, а от него в цистерну или к лафетному стволу. Задвижку 14 необходимо открывать перед выездом, если предполагается работа лафетным стволом на ходу автомобиля. По трубопроводу от коллектора при открытой задвижке 14 цистерну можно заполнить водой из водоисточника или водоема. При этом распределительный клапан 11 должен быть поставлен в положение «Цистерна».

К задвижке 15 присоединены напорные трубы 16 с соединительными головками для подсоединения напорных рукавов. Эти трубы закрыты заглушками 17.

Подача воды. При подаче воды в рукавную линию ствола «первой помощи» вода в цистерне 10 при открытом клапане 13 по трубопроводу поступает в насос. Из насоса вода поступает в коллектор 9, и при открытии напорной задвижки 15 она подается в напорные трубы 16 и в присоединенные к ним рукавные линии.

При подаче воды лафетным стволом из цистерны необходимо открыть клапан 13 и напорную задвижку 14. Кроме того, распределительный клапан следует предварительно поставить в положение «Лафетный ствол».

Для подачи воды ручным стволом или лафетным стволом при ее заборе из открытого водоема, сняв заглушку, подсоединяют к всасывающему патрубку 19 насоса 18 всасывающие пожарные рукава. С помощью вакуумной системы производится забор воды. При открытых задвижках 14 и 15 вода подается в лафетный 12 или ручные стволы через рукавные линии, подсоединенные к напорным трубам 16. Для подачи воды стволами при заборе ее из водопроводной сети, сняв заглушку со всасывающего патрубка насоса 18, присоединяют к нему водосборник. Установив пожарную колонку на гидрант, соединяют его патрубки всасывающими рукавами с водосборником. Для надежного забора воды один из рукавов должен быть обязательно жестким. Подача воды насосом производится, как указано выше.

Подача водного раствора пенообразователя. Поступление пенообразователя в насос возможно из пенобака 7, посторонней емкости или цистерны 10 (если она вместо воды заполнена пенообразователем).

При всех способах забора воды и подачи ее к стволам можно подавать водный раствор пенообразователя. Для этого необходимо включить пеносмеситель 2, открыв его кран и вентиль 5. При этом пенообразователь из бака 7 по трубопроводу поступит к пеносмесителю 2 и от него будет эжектироваться и по трубопроводу поступать во всасывающую полость насоса 18. Подача насосом водного раствора пенообразователя осуществляется так же, как при подаче воды.

Подачу пенообразователя в пеносмеситель можно осуществить из посторонней емкости. Для этого необходимо снять заглушку 3 с крестовины 4 и подсоединить к ней шланг от внешней емкости с пенообразователем. При этом пенообразователь (клапан 6 должен быть закрыт), как описано выше, будет поступать в насос. Если цистерна 10 заполнена пенообразователем, то его поступление в пеносмеситель будет происходить при открытом вентиле 5 и закрытом клапане 6.

Промывка системы пеносмесителя. Пенообразователь вызывает сильную коррозию металлов, поэтому после работы систему необходимо промыть водой. Промывка может осуществляться водой из цистерны или из посторонней емкости. При открытом вентиле 5 и работающем насосе необходимо включить кран пеносмесителя 2. Вода из цистерны 10 пойдет по трубопроводам через вентиль 5, крестовину 4, пеносмеситель 2 во всасывающую полость насоса 18, при этом целесообразно несколько раз повернуть рукоятку пеносмесителя. Остатки пенообразователя будет удалены из трубопроводов и пеносмесителя. Промывка системы из посторонней емкости производится так же, как и подача пенообразователя.

2

3

4

5

6

2

3

4

8

9

10

11

7

Из

В

В цистерну

15

15

15

15

16

14

13

12

1

пожарному стволу

К лафетному

Пневматическое дистанционное управление клапанами водопенных коммуникаций на АЦ-40(131)137 (рис. 7.9).

Рис. 7.9. Схема пневматического дистанционного привода:

1 – пенобак; 2, 8 – клапаны; 3, 11 – поршни; 4 – пружина; 5 – клапан Ду-32; 6 – цистерна; 7 – клапан Ду-80; 9 – клапан- распределитель; 10 – шток; 12 – баллонсо сжатым воздухом; 13 – клапан-ограничитель; 14 – разобщительный кран;15 – золотник; 16 – колонка управления

Из баллона 12 сжатый воздух поступает по трубопроводам через разобщительный кран 14 и клапан-ограничитель 13 к кранам I, II , III колонки управления 16, установленной на крыше кабины водителя слева от лафетного ствола. Разобщительный кран отключает от пневматического привода тормозов систему дистанционного управления, если в ней появляются неисправности. Клапан-ограничитель поддерживает необходимое давление в тормозной системе.

По трубопроводу от крана I воздух поступает к клапану 5, а от крана II – к клапану 7, кран III соединен с пневмоцилиндром распределительного клапана 9. Корпуса кранов I, II и III имеют по три штуцера: А – для подвода воздуха из баллонов 12, Б и В – для подвода воздуха к исполнительным механизмам. На штуцера Б кранов I и II установлены заглушки. Через штуцер Г полость каждого крана и клапана сообщается с атмосферой. В кранах I, II и III золотниками 15 регулируется направление воздуха в системе.

Заправка цистерны водой. Рассмотрим схему, приведенную на рис. 7.9. В кранах I и II путь воздуху прегражден. Из крана III воздух по трубопроводу поступает к центральному штуцеру пневмоцилиндра распределительного клапана 9. При движении поршня 11 с уплотнительными кольцами заслонка в штоке 10 прижимается к седлу корпуса и вода из пожарного насоса поступает в цистерну.

Подача воды в лафетный ствол. Для подачи воды необходимо выполнить следующие действия.

1. Поставить кран III в положение “Включение” (см. расположение золотника в правой части рисунка). При этом положении золотника воздух будет поступать по воздухопроводу в левую часть пневмоцилиндра и перемещать поршень 11, а с ним шток 10 и клапан 8, открывая путь воде к лафетному пожарному стволу. Воздух из правой части пневмоцилиндра распределительного клапана через воздухопровод и золотник 15 будет выходить в атмосферу. При открытой задвижке 14 (см.рис. 7.6) вода из насоса будет поступать в лафетный ствол. Так будет подаваться вода, если пожарная автоцистерна установлена на водоисточник.

2. Для забора воды из цистерны необходимо включить клапан 7. Для этого следует перевести рукоятку крана II в положение “Включено”. Воздух по трубопроводу поступит в пневмоцилиндр клапана 7. При движении поршня 3, преодолевая сопротивление пружины 4, вместе с ним переместится клапан 2, давая доступ воде из цистерны в пожарный насос и к распределительному клапану. По окончании работы рукоятку крана следует переместить в положение “Выключено”, при этом под действием пружины 4 клапан 2 перекроет доступ воды из цистерны в пожарный насос. Воздух из пневмоцилиндра по воздухопроводу выйдет в атмосферу.

Подача воздушно-механической пены. Для подачи воздушно-механической пены необходимо на лафетный ствол подать воду, а во всасывающую полость насоса – пенообразователь. Для этого следует включить водяной кран пеносмесителя и установить дозировку. Затем нужно рукоятку крана I перевести в положение “Включено”, при этом по воздухопроводу сжатый воздух поступит в клапан 5. Этот клапан работает аналогично клапану 7. Клапан 2 откроет трубопровод из бака с пенообразователем 1, и пенообразователь поступит к пеносмесителю, а затем во всасывающую полость насоса.

7

8

9

6

5

4

3

2

1

12

11

10

Рис. 7.10. Клапан-ограничитель:

1 – регулировочный болт; 2 – контргайка; 3 – шайба; 4 – пружина; 5 – корпус;6 – клапан; 7 – крышка;8 – отверстие; 9 – штуцер; 10, 12 – стальные детали; 11 – диафрагма

Поддержание необходимого давления воздуха в тормозной системе обеспечивает клапан-ограничитель (рис. 7.10). Мембранная диафрагма 11 зажата между корпусом 5 и крышкой клапана 7, соединенными шпильками. На диафрагме закреплены две стальные детали 10 и 12 в виде полых цилиндров с дном, а также латунный клапан 6 с резиновой вставкой. Между мембраной и шайбой 3 размещена пружина 4. Воздух проходит через штуцер 9 и давит на диафрагму. Преодолевая силу пружины 4, мембрана прогибается и отводит клапан 6 вниз. При этом открывается проход воздуха через отверстие 8, в которое ввертывается выходной штуцер.

Пружина рассчитана таким образом, что клапан открывается только при давлении выше 539 кПа. Сила сжатия пружины регулируется болтом 1, который стопорится контргайкой 2. Давление воздуха в системе обычно около 735 кПа. При разборке клапана его детали 10 и 12 должны смазываться смазкой ЦИАТИМ-201. Разобщительный кран и клапан-ограничитель монтируются на крыше кабины.

Водопенные коммуникации пожарных автоцистерн других типов. На пожарных автоцистернах АЦ-30(130): №А, АЦ-40(130)63Б, АЦ-30(53А)106Б, а также на автонасосах АН-30(130)64А и АНР-40(130)127А принципиальные схемы водопенных коммуникаций и их устройство незначительно отличаются от представленной на рис. 7.6. На этих пожарных автомобилях не устанавливаются лафетные стволы; кроме того, управление водопенными коммуникациями на них предусмотрено только ручное, поэтому клапаны Ду-80 и Ду-32 заменены вентилями.

Водопенные коммуникации АЦ на шасси Урал 5557 и 55571. На этих шасси производятся четыре АЦ. Две из них имеют лафетные стволы [АЦП-6/6-40(5557)-10 и АЦП-8/6(55571)-30] и две без лафетных стволов [АЦП –9/3-40(55571)-30 и АЦП-6/3-40(5557)-10]. В водопенных коммуникациях (рис. 7.11) применяются вентили (задвижки), конструкция которых описывалась раньше. Так, задвижка 5 – типа Ду-25, 9 – типа Ду-80, а 12 – типа Ду-100.

6

7

11

12

13

14

16

17

19

18

2

1

3

4

8

9

10

15

5

4

Рис. 7.11. Принципиальная схемаводопенных коммуникаций:АЦ-6/6-40 (Урал 5557-10)

1 – масленка; 2 – пеносмеситель;3 – тройник; 4, 13, 19 – заглушки; 5, 9, 10, 12 – вентили; 6 – пенобак; 7 – лафетный ствол; 8 – вакуумный кран; 11 – цистерна; 14 – напорная труба; 15 – напорнаязадвижка; 16 – коллектор; 17 – пожарный насос; 18 – всасывающий патрубок

В отличие от общей схемы АЦ-40(131)137 (см. рис. 7.6) в этой схеме отдельно установлен лафетный ствол 7. Вода к нему поступает от коллектора 16 насоса при открытом вентиле 9.

Особенностью этой системы является также то, что в ней не предусмотрена промывка водопенных коммуникаций с забором воды из цистерны. Эта операция должна выполняться подачей воды от постороннего источника, подсоединяемого к тройнику 3.

Пенообразователь для тушения может забираться из пенобака 6 при открытом вентиле 5 или из посторонней емкости, подсоединяемой к тройнику 3.

На всех АЦ этого типа устанавливается только насос ПН-40УВ. На ВПК осуществляются все операции, аналогично тому, как это описано для АЦ-40(131)137.

Водопенные коммуникации АЦ на шасси КамАЗ. На шасси КамАЗ разработаны и производятся ряд автоцистерн. На них могут быть установлены пожарные насосы ПН-40-УВ, ПЦНН-40/100, ПЦНК-40/100-4/400. На ряде из них могут быть лафетные стволы с ручным или гидравлическим приводом. Из возможных комбинаций оборудования АЦ выделим типичные.

Водопенные коммуникации АЦ с лафетными стволами и насосами ПН-40УВ. Такими ВПК оборудованы автоцистерны АЦ-5-40(4310), АЦ-7-4-(53213) и др. Принципиальная схема ВПК представлена нарис. 7.12.

Заполнение насоса водой производится из постороннего водоисточника (водоема или водопроводной сети) так же, как описано раньше. При заполнении его из цистерны 1 должны быть закрыты вентили 15 и 3 и открыта задвижка 2. При открытом вакуумном кране вода заполнит насос.

Подача воды в рукавные линии может осуществляться из цистерны 1 при открытой задвижке 2 и закрытых вентилях 3 и 15. Вода поступит в насос, а из него к напорной задвижке 9, к штуцеру которой должна быть присоединена рукавная линия.

8

9

10

11

12

13

7

6

15

1

14

5

4

2

3

Рис. 7.12. Водопенные коммуникации АЦ с лафетным стволом на шасси КамАЗ:

1 – цистерна; 2 – задвижка Ду-100; 3 – вентильДу-26; 4 – всасывающий патрубок; 5 – штуцер;6 – пеносмеситель; 7 – вентиль Ду-25; 8 – пенобак; 9 – напорная задвижка Ду-70; 10 – вакуумный клапан; 11 – гидроцилиндр привода лафетного ствола; 12 – клапан Ду-70; 13 – лафетный ствол;14 – пожарный насос; 15 – вентиль Ду-50

Поступление воды в лафетный ствол 13 может осуществляться из цистерны 1 (задвижка 2 открыта, а вентили 3 и 15 закрыты) или от посторонних источников, подсоединяемых к всасывающему патрубку 4. Управление клапаном 12 и лафетным стволом может осуществляться вручную или с помощью гидропривода 11.

Подача раствора пенообразователя в насос 14 может осуществляться из пенобака при открытом вентиле 7 через пеносмеситель 6. Возможно забирать пенообразователь из посторонней емкости, подсоединяемой к штуцеру 5. Последовательность операций такая же, как уже описывалось. На серии этих АЦ возможно цистерны заполнять пенообразователем и использовать их как автомобили воздушно-пенного тушения. Заправка цистерны 1 пенообразователем возможна через штуцер 5 при открытом вентиле 3 и закрытых задвижке 2 и вентилях 15 и 7.

Применяемый в схеме способ заполнения цистерны пенообразователем используется и для промывки системы подачи пенообразователя. При закрытых вентилях 15 и 7 и задвижке 2 вода из цистерны 1 будет забираться пеносмесителем 6 и подаваться в насос и его коммуникации, осуществляя их промывку.

Заполнение цистерны водой может осуществляться заливкой ее через заливной патрубок на крышке люка. После тушения пожара от постороннего источника вода насосом подается через вентиль 15 при закрытых задвижке 2 и вентиле 3.

Дистанционное управление лафетным стволом ПЛС-20. На автоцистерне применяется гидравлическая система управления лафетным стволом. Составной ее частью является кран-гидрозамок (рис. 7.13). Он предназначен для запирания рабочей жидкости в цилиндрах поворота механизма управления движением лафетного ствола при выключенной системе гидроуправления во время движения автоцистерны.

30480183515

а







1

9

4

10

5

6

7

8



3

2



9



Рис. 7.13. Кран-гидрозамок:

1 – корпус; 2 – маховик; 3 – игольчатый клапан; 4 – гайка; 5 – золотник; 6 – клапан;7 – пружина; 8 – прокладка; 9 – штуцер; 10 – кольцо

В канале корпуса 1 гидрозамка имеются два клапана 6, две пружины 7 и золотники 5. Канал закрыт гайками 4. Усилиями пружины клапаны прижаты к гнездам в корпусе 1. При подаче масла от пульта управления к одному из штуцеров в полость крана между золотниками 5 и клапанами происходит следующее (рассмотрим это на примере подачи масла в правую полость в сечении Б-Б). Масло под давлением откроет клапаны и поступит по внутреннему каналу а (сечение А-А) к правому цилиндру поворота лафетного ствола. Золотник, открывая противоположный клапан, соединит полость левого цилиндра поворота со сливом масла. При открывании игольчатого клапана 3 (сечение А-А) обе полости цилиндров поворота будут соединены между собой. В этом случае станет возможным управление лафетным стволом вручную.

Дистанционное управление (рис. 7.14) обеспечивается работой золотниковых распределителей 3 управлением движения лафетного ствола 4. Распределительная панель с золотниковыми распределителями 3 и манометр размещены на пульте управления, закрепленном на правой стенке подставки сидения водителя. Масло из маслобака 1 по трубопроводам подается на распределительную панель в золотниковые распределители 3. Они обеспечивают работу привода 5 подъема лафетного ствола и привода 7 его поворота в горизонтальной плоскости. В качестве рабочей жидкости используется веретенное масло. Рабочее давление в системе 3–4 МПа.

Рис. 7.14. Гидропривод лафетного ствола

1 – маслобак в сборе; 2 – клапан;3 – гидрораспределители; 4 – лафетный ствол; 5 – гидроцилиндр подъема;6 – игольчатый клапан; 7 – гидроцилиндр поворота; 8 – гидрозамок;9 – гидропривод клапана Ду-70;10 – шестеренный насос

5

6

7

8

4

3

9

2

1

10

Все золотниковые устройства надежно работают, если в них исключается утечка масла. Поэтому в процессе эксплуатации необходимо следить, чтобы обеспечивалась хорошая фильтрация масла, тем самым достигается уменьшение изнашивания рабочих поверхностей плунжера и гильзы.

Водопенные коммуникации АЦ с насосом ПЦНК-40/100-4/400.

Пожарные насосы этого типа устанавливают на ряде автоцистерн по желанию заказчика. Они рекомендованы заводом на АЦ-5-40/4(4310) и АЦ-7 40/4(53213). ВПК на обеих автоцистернах идентичны.

Водопенные коммуникации этого насоса целесообразно рассматривать состоящими из двух контуров: секции нормального давления (СНД) и секции высокого давления (СВД) (рис. 7.15).

Контур секции нормального давления – это водопенная коммуникация насоса ПЦНН-40/100. Он принципиально не отличается от водопенных коммуникаций АЦ с насосами ПН-40УВ (см. рис. 7.12). Единственное отличие состоит в том, что через его коллектор 10 возможно подавать воду в четыре рукавные линии, подсоединяемые к патрубкам четырех напорных шаровых вентилей 11. Все операции по выполнению всех видов работ, производимых ВПК, идентичны описанным раньше.

Валы насосов ПЦНН-40/100 14 и ПЦНВ-4/400 15 соединены зубчатой передачей, включаемой фрикционной муфтой.

Секция высокого давления состоит из насоса 15 и коллектора 17. На коллекторе смонтированы перепускной клапан 16, кран 18 типа ДУ-25 и манометр. К штуцеру крана 18 прикреплен рукав, намотанный на рукавную катушку 19 типа КРВД-400-60. Рукав рассчитан на работу под напором до 400 м и имеет длину 60 м. На конце рукава закреплен ствол-распылитель высокого давления СРВД-2-300. Стволом можно подавать воду в номинальном режиме 2 л/с при напоре 300 м или не менее 1,1 м3/мин воздушно-механической пены.

22

23

20

19

10

21

18

17

15

16

11

11

12

11

11

13

14

2

1

3

4

5

6

7

8

9



Рис. 7.15. Водопенные коммуникации АЦ с насосамиПЦНК-40/100-4/400 на шасси КамАЗ:

1 – цистерна; 2 – задвижка Ду-100; 3 – вентиль Ду-25; 4 – всасывающий патрубок; 5 – штуцер; 6 – пеносмеситель; 7 – кран Ду-25; 8 – пенобак; 9 – кран Ду-25;10 – коллектор насоса низкого давления; 11 – вентили шаровые напорные Ду-70;12 – задвижка Ду-70; 13 – вентиль Ду-50; 14 – насос 40/100; 15 – насос 4/400;16 – перепускной клапан; 17 – коллектор насоса высокого давления; 18 – кран Ду-25;19 – рукавная катушка; 20 – ствол ручной; 21 – клапан обратный; 22 – кран продувкирукава высокого давления 1/2"; 23 – рессивер шасси

При уменьшении или прекращении подачи воды стволом сработает перепускной клапан 16 и вода от него по трубопроводу будет перетекать в цистерну 1.

По окончании работы СВД осуществляется удаление остатков воды из рукава сжатым воздухом. Сжатый воздух поступает из рессивера 23 автомобиля. Для продувки необходимо закрыть кран 18 и открыть кран 22. Обратный клапан 21 предотвращает поступление воды к рессиверу 23.

Водопенные коммуникации на АЦ с насосом НЦПВ-4/400. Насос этого типа устанавливают на автоцистернах с цистернами вместимостью 0,82 м3 воды и пенобаками вместимостью от 50 до 200 л. Эти автоцистерны оборудуются на шасси ЗИЛ-4327-20(4х4)- АЦ-0,8-4 или на шасси ЗИЛ-5301(4х2). Они могут забирать воду только из своих цистерн или от пожарного водопровода. Поэтому на них не имеется вакуумных насосов.

Особенностью ВПК является то, что пеносмеситель 5 (рис. 7.16) состоит из эжектора 6, отсекающего клапана 7 и перепускного клапана 9. В пеносмесителе имеется сливной шаровой кран 8. Такие сливные краны имеются на коллекторе 2 и два сливных крана на насосе 1. Напорные вентили 11 аналогичны по конструкции.

6

3

4

5

7

10

11

9

8

16

2

1

13

12

14

15



Рис. 7.16. Водопенные коммуникации АЦ с НЦПВ 4/400

1 – насос; 2 – коллектор; 3 – пенобак; 4 – кран включения пенобака; 5 – пеносмеситель; 6 – эжектор; 7 – отсекающий клапан; 8 – сливной шаровой кран; 9 – перепускнойклапан; 10 – шаровой кран; 11 – напорный вентиль; 12 – цистерна; 13, 15 и16 – трубопроводы; 14 – клапан

Забор воды осуществляется из цистерны 12 при открытом клапане 14 или от водопроводной сети через напорно-всасывающие рукава. При закрытом верхнем напорном вентиле 11 и открытом нижнем вентиле 11 заполняется цистерна. Подача воды в рукавную линию осуществляется при открытом верхнем напорном вентиле.

Подача пенообразователя осуществляется следующим образом. При работающем насосе включают эжектор 6 и кран 4. Пенообразователь будет поступать к отсекающему клапану 7, затем к эжектору 6 и из него по трубопроводу 16 во всасывающую полость насоса и через напорный вентиль 11 в рукавную линию.

Промывка системы подачи пенообразователя производится только при заборе воды от гидранта. Перед началом промывки к напорному вентилю должен быть подсоединен ствол-распылитель, а краном 4 необходимо отключить подвод пенообразователя из пенобака 3 к отсекающему клапану 7.

Регулируя обороты насоса, устанавливают давление на выходе из насоса в пределах 1 – 3 МПа, кран включения эжектора ставят в положение «открыто» и открывают шаровой кран 10. При этом вода из первой ступени насоса по трубе 13 поступит в ОК 7, из него в эжектор 6 и по трубе 16 во всасывающую полость насоса. В насосе промывочная вода будет смешиваться с водой, поступающей из гидранта, и выливаться через ствол-распылитель. Насос должен работать 3 – 5 мин, при этом следует поворачивать на полный оборот 3 – 5 раз ручку дозатора пеносмесителя.

Периодически производится проверка работоспособности перепускного клапана 9. Для этого необходимо отсоединить трубопровод 15 от цистерны 12 и направить его конец в мерную емкость. Создав давление в насосе, равное 2 – 3 МПа, измерить расход воды. Он должен быть не менее 0,1 л/с. Открыв напорный вентиль 11 и включив ствол-распылитель при давлении воды 3,5 – 4 МПа, переток воды должен прекратиться. Полностью перекрыв ствол-распылитель при давлении в насосе 4 – 4,5 МПа, переток воды должен возобновиться с подачей не менее 0,1 л/с.

Проверка производится не менее двух раз.

7.4. Согласование режимов работы двигателя ПА

и потребителей энергии

Потребителями энергии могут быть генераторы электрического тока, лебедки, компрессоры, приводы механизмов пожарных автолестниц и автоколенчатых подъемников, а также пожарные насосы на автоцистернах и автонасосах.

Мощность потребителей энергии на пожарных машинах сравнительно небольшая, да и эксплуатируются они в основном (кроме пожарных насосов) при постоянных скоростных режимах. Поэтому согласование режимов их эксплуатации и двигателя в основном осуществляется по скоростным параметрам. Рассмотрим это на следующем примере (рис. 7.17).

На этом рисунке кривая 2 является частичной скоростной характеристикой, ограничивающей мощность двигателя при его работе в стационарном режиме. Кривая 3 характеризует крутящий момент, соответствующий частичной скоростной характеристике (кривая 2). Прямая 4 характеризует максимальную мощность потребителя. Диапазон скоростных его режимов от nм до nк может быть рекомендован для привода потребителя. Зная обороты вала потребителя nп и выбранные обороты двигателя nдв, определяют передаточное отношение привода:

. (7.1)

М, Нм



nN

Me max

N, кВт

Рис. 7.17. Согласование режимов работы двигателя и потребителя:

1 – внешняя скоростная характеристика двигателя; 2 – частичная характеристика;3 – крутящий момент; 4 – уровеньмощности потребителя

n, об/мин



0,75nN

Nп

0,7 Nemах

Ne, кВт

1

Nemax

Более сложным является согласование режимов эксплуатации пожарных насосов и двигателей. Пожарные насосы эксплуатируются в широком интервале величин развиваемых ими напоров и подач воды. Изменение от максимальных до минимальных значений величин напоров и подач воды образуют поле эксплуатации насосов. Естественно, что каждой точке этого поля будет соответствовать величина потребляемой мощности. Вот эти мощности и необходимо согласовать с полем мощности, отдаваемой двигателем в стационарном режиме работы двигателя.

Для осуществления процедуры согласования необходимо знать зависимости напоров Н, м, развиваемых насосами, от величин подачи Q, л/с. Такие зависимостиH = f(Q) при заданной величине высоты всасывания hвс = 3,5 м и постоянных оборотах вала насоса получают экспериментально. При этом, естественно, определяют мощность N = f(Q) и значение коэффициента полезного действия.

Было установлено, что изменение Н, N и η в зависимости от величины Q можно выразить аналитически:

уі = Ai + BiQ - CiQ2, (7.2)

где i = 1 – величина напора, м вод.ст.; i = 2 – величина потребляемой мощности, кВт; i = 3 – значение коэффициента полезного действия; Q – подача насоса, л/с.

Значения постоянных А, В и С приводятся в табл. 7.1.

При определении мощности N, потребляемой пожарным насосом, необходимо учитывать ее потери в трансмиссии. При этом будет определена мощность, отдаваемая двигателем. Потери мощности учитываются коэффициентом полезного действия трансмиссии:

, (7.3)

где = 0,97 – КПД зубчатой передачи; = 0,99 – КПД карданного вала; ηп.о= 0,99 – КПД промежуточной опоры; к – количество зацепленийзубчатых колес или опор карданного вала.

Таблица 7.1



п/п Насосы и показатели Размер-ность Константы

А В С

1

2

3 ПН-40УВ

Напор Н

Мощность N

КПД м

кВт

- 110,11

22,78

0 0,49

1,33

0,031 0,02

8,85·10-3

3,77·10-4

1

2

3 ПН-60

Напор Н

Мощность N

КПД м

кВт

- 104

48

0 0,38

0,42

0,013 1,74·10-3

5,54·10-3

7,94·10-5

1

2

3 ПН-110

Напор Н

Мощность N

КПД м

кВт

- 111,7

87,75

0 0,23

0,67

0,0098 29,23·10-4

1,99·10-4

3,9·10-5

С учетом КПД трансмиссии насоса потребляемая им мощность Nн равна

, (7.4)

где N'н – мощность, вычисленная по формуле (7.2).

Значения Н, N и η, вычисленные по формулам (7.2) и (7.4), характерны только при одной скорости nн вала насоса. Они изображены кривыми ав и a'в' на рис. 7.18.

Для того чтобы определить поле мощности, потребляемой насосом, необходимо построить зависимости Н = f(Q) и N = f(Q) при частотах вращения вала nн2 и nн3. Предположив, что подача воды насосом возможна при 0,5 Нном, выбирают величину nн3. Это соответствует nн3 0,65 nн1. Величину nн2 выбирают в интервале от nн1 до nн3.

Обозначим выбираемую скорость nнх, тогда соответствующие ей значения Q, Н и N определим на основании формулы теории подобия:

. (7.5)

Вычисленные значения Нх и Nх при различных скоростях nN изображают, как показано на рис. 7.18. Поле а'b'dc' характеризует потребляемую насосом мощность.

Для сопоставления отбираемой от двигателя мощности и мощности, потребляемой насосом, необходимо согласовать частоты вращения вала двигателя nдв с частотами вращения nн вала насоса. Это согласование осуществляется передаточным отношением коробки отбора мощности по формуле

(7.6)

где nN – частота вращения вала двигателя при максимальной мощности, об/ мин; nн1 – номинальная частота вращения вала насоса, об/мин.

nN1

nN2

nN3

nN3

nN2

nN1

N, кВт

N, Hм

Nеmax

nN

0,75nN

H, м

n, об/мин

0,7 Nеmax



Рис. 7.18. Согласование режимов работы двигателя и пожарного насоса

Используя передаточное отношение, легко находим частоты вращения вала двигателя, соответствующие скоростям вала насоса n1= i nн1,n2 = inн2 и т.д. Полученные значения частот вращения вала двигателя устанавливаем на оси частот вращения двигателя в третьем квадранте графической схемы расчета. Затем в этом квадранте строим внешнюю скоростную характеристику двигателя и, как указывалось выше, определяем точку К. Из точек n1, n2 и n3 на оси абсцисс опускаем перпендикулярные прямые. На них с помощью горизонтальных прямых c'...c'', d'...d'' и т.д. находим точки a''e"c"d"f"в". Соединяя эти точки отрезками прямых и кривых линий, определяем поле мощности, потребляемой насосом. Если имеется требуемый запас мощности в точке К, то двигатель будет эксплуатироваться в стационарных условиях работы без перегрева.

2

3

1

Ne,кВт

n, об/мин

Рис. 7.19. Совмещение полей мощности насоса ПН-40УВ и дизеля ЗИЛ-645:

1– внешняя скоростная характеристика дизеля; 2 – удельные расходы топлива;3 – поле мощности насоса

г/(кВт·ч)

Совмещение полей мощности двигателя и насоса позволяет определять и наиболее экономичные по расходу топлива режимы. Для такой оценки на поле мощностей двигателя наносят изолинии удельных расходов топлива ge г/(кВт·ч). Для двигателя дизель ЗИЛ 645 изолинии удельных расходов топлива ge г/(кВт·ч) представлены на рис. 7.19. На нем поз. 3 означает поле d"в"а"с" мощности, потребляемой пожарным насосом ПН-40УВ. Тонкими кривыми линями типа 2 обозначены удельные расходы топлива.

У каждой из них указаны величины удельных расходов. Из анализа результатов сравнения границ поля мощности, потребляемой насосом, и удельных расходов топлива следует ряд выводов. Во-первых, в области малых и больших расходов воды повышение напора, соответственно, от с к а и от d к в (см. рис. 7.18) сопровождается, как показано на рис. 7.19 (соответственно от с" к а" и от d" к в"), уменьшением удельных расходов топлива. Во-вторых, аналогично уменьшаются удельные расходы топлива при увеличении подач воды насосом (от с" до d" и от а" до в"). Таким образом, наиболее экономичным по удельному расходу двигателя являются режимы работы насоса, близкие к номинальным величинам подачи насоса и развиваемым им напора.

7.5. Компоновка пожарных автомобилей

Общие требования. Пожарные автомобили созданы на базе грузовых автомобилей общего назначения, состоящих из трех основных частей: двигателя, шасси и кузова.

На большинстве автомобилей установлены поршневые карбюраторные двигатели или дизели. Часто двигатели расположены впереди кабины. На шасси для некоторых аэродромных пожарных автомобилей кабины размещаются впереди двигателя.

Шасси объединяет несущую систему, трансмиссию, мосты, подвеску, колеса, рулевое управление и тормозные системы. Они могут быть полноприводными (4х4; 6х6) и неполноприводными (4х2; 6х2; 6х4).

Кузов грузового автомобиля, размещаемый на раме шасси, состоит из платформы под груз и кабины водителя.

Для создания пожарных машин на шасси грузовых автомобилей сооружают пожарную надстройку. В зависимости от назначения пожарного автомобиля надстройка может включать кабину (салон) для боевого расчета, различные механизмы, цистерны и баки для ОТВ, пожарно-техническое вооружение.

Пожарная надстройка является, таким образом, перевозимым грузом. Масса этого груза постоянна, т.е. пожарный автомобиль не имеет холостых пробегов. По определению, он эксплуатируется в транспортном режиме и в режиме боевой эксплуатации на пожарах.

Компоновка пожарных автомобилей должна быть такой, чтобы реализовались его технические возможности в транспортном режиме, в условиях, ограничивающих маневрирование, и в стационарных режимах при воздействии опасных факторов пожара.

Технический уровень и совершенство конструкции пожарной надстройки, а также рациональность ее компоновки с базовым шасси должны обеспечивать реализацию всех требований, предъявляемых к пожарным автомобилям. При этом компоновка должна:

не снижать показателей безопасности базового шасси;

обеспечивать в минимальное время осуществление боевых действий с безопасностью для личного состава;

удовлетворять требованиям охраны труда пожарных и окружающей среды.

Все эти требования будут рассматриваться применительно к автоцистернам. Это обусловлено тем, что они составляют основную массу ПМ, АЦ укомплектованы наиболее многочисленными боевыми расчетами. АЦ перевозят смещаемые и несмещаемые грузы. Более 99 % всех пожаров тушат боевые расчеты АЦ.

Некоторые особенности компоновок других типов ПА будут рассмотрены при описании их конструкций.

Особенности компоновок АЦ. Компоновка АЦ обеспечивает рациональное взаимное расположение элементов надстройки и агрегатов базового шасси. От ее совершенства зависит возможность наиболее эффективной реализации технических возможностей АЦ. В основном она зависит от численности боевых расчетов, а также взаимного расположения емкостей для огнетушащих веществ и пожарного насоса. Последнее будет определять и компоновку отсеков для пожарно-технического вооружения.

Требования к компоновке АЦ формулирует заказчик. Ее анализ важен также и для потребителя.

Две особенности важны для компоновок АЦ.

Первая особенность, важная для всех ПА, – это размещение салона боевого расчета за кабиной базового шасси. Вторая особенность состоит в том, что размещение цистерны для воды, по существу, определяет всю компоновку.

Размещение цистерны может быть осуществлено вдоль или поперек продольной оси базового шасси (рис. 7.20). Оно и определяет собой возможности и ограничения компоновок ПН и ПТВ. Так, при поперечном размещении цистерны пожарный насос можно установить только сзади в кормовом насосном отсеке.

923925104775

Рис. 7.20. Классификация компоновок АЦ

Компоновка салонов. В зависимости от численности боевого расчета АЦ, как и другие ПА, могут иметь посадочные формулы 1+2; 1+5; 1+8. Каждой из них соответствует своя компоновка салона. Во многих ПА и некоторых АЦ используется кабина базового шасси (рис. 7.21, а). В АЦ могут быть салоны с одним (рис. 7.21, б) или двумя рядами сидений. В салонах возможно размещение СИЗОД или установка пожарного насоса (рис. 7.21, б).

Несколько иная компоновка АЦ на шасси КамАЗ (рис. 7.21, г). Кабина боевого расчета отделена от кабины водителя промежутком с. Кроме того, отсеки 4 могут быть посередине и в кормовой части.

Подножки для доступа в салон устраивают на высоте, обеспечивающей пожарным малого роста свободное пользование ими. Размеры кабин салонов, дверей у них, а также сидений определены, исходя из роста высоких пожарных.

1

2

6

5

3

4

1

2

3

5

4

6

4

5

3

4

2

1

с

6

Рис. 7.21. Схемы компоновок АЦ:

1 – двигатель; 2 – кабина водителя и салон для боевого расчета;3 – цистерна; 4 – отсек; 5 – пенобак;6 – пожарный насос

1

2

3

4

5

6

а

б

в

г

Все соединяемые детали салона должны иметь уплотнения, препятствующие проникновению в кабину пыли, атмосферных осадков и потере тепла. В салоне размещают один или несколько огнетушителей, а также аптечку. Оборудование должно размещаться так, чтобы исключалась возможность его самопроизвольного перемещения при движении автомобиля, а острые углы не наносили травму пожарным.

Сосуды для ОТВ. На АЦ имеются цистерны для воды и баки для пенообразователя. Вместимость цистерн и их форма во многом влияют на компоновку и безопасность движения.

Традиционно в нашей стране цистерны компоновались вдоль продольной оси базового шасси. На АЦ с большой вместимостью цистерн стали применять поперечное их размещение (рис. 7.21, в, г). Такая компоновка позволяет более рационально распределять массу ПА по осям, что обеспечивает в случае полноприводных шасси более равномерную реализацию тяговых сил на колесах и улучшает управляемость АЦ.

Цистерны большой вместимости в поперечном сечении имеют прямоугольную форму. По сравнению с другими формами (круглое или эллиптическое) в этом случае значительно уменьшается высота центра массы Н. Этот фактор улучшает безопасность движения АЦ по косогору или при повороте, так как в этом случае должно выполняться соответственно одно из двух условий:

tg β ≤ В/2H или v ≤ , (7.7)

где β – угол косогора; В – колея базы АЦ; Н – высота центра массы АЦ;R – минимальный радиус поворота АЦ; g – ускорение свободного падения.

Отношение К = 2В/H называют коэффициентом устойчивости автомобиля против опрокидывания. При заданной колее В его величина зависит только от Н. Чем она больше, тем меньший угол β можно преодолеть и c меньшей скоростью осуществить поворот.

В зависимости от степени заполнения цистерны К уменьшается на8 – 10 %. Поэтому необходимо после тушения пожара заполнять цистерну водой. Это требуется и БУПО для обеспечения боевой готовности АЦ.

В отличие от грузовых автомобилей пожарные автоцистерны перевозят смещающиеся грузы. В АЦ таким грузом является вода. Ее колебания оказывают большое влияние на безопасность движения. Гашение колебаний жидкости осуществляется волноломами.

Волноломы – это перегородки, устанавливаемые поперек цистерны перпендикулярно его продольной оси. Площадь перегородки должна составлять до 95 % от площади поперечного сечения цистерны. Гашение колебаний жидкости волноломами происходит более интенсивно, если их устанавливать под углом 30 – 35о с наклоном в сторону кормы. В АЦ с поперечным расположением цистерны и пенобаков волноломы устанавливают вдоль оси автомобиля. Гашение колебаний жидкости может осуществляться и губчатым заполнителем, например, на основе полиуретана.

Пожарные насосы. В мировой практике применяют переднее, среднее и заднее размещение насосов. Переднее расположение, главным образом, шестеренных насосов применяется на маломощных, упрощенных автоцистернах. В нашей стране преимущественное распространение получили компоновочные схемы с задним размещением насосов (рис. 7.21).

Схемы компоновок со средним расположением насосов имеют ряд достоинств: улучшаются условия управления насосом, упрощается конструкция трансмиссии, что позволяет уменьшать не только ее массу, но и высоту центра массы, нет необходимости специально обогревать насос. Однако такая схема компоновки имеет и существенные изъяны. Во-первых, возрастает травмоопасность личного состава в кабине в случае ДТП. Во-вторых, вывод всасывающих патрубков на стороны делает забор воды менее удобным, чем в случае компоновки с задним расположением насоса.

Компоновка насоса должна обеспечивать управление насосом пожарными любого роста. Этому же требованию должны удовлетворять расположение сливных кранов, кранов включения дополнительной системы охлаждения двигателя при ее наличии.

Кузов АЦ. В кузовах размещают емкости для ОТВ, насосы с водопенными коммуникациями, приводы их управления и пожарно-техническое вооружение ПТВ. Кузова компонуют из различных деталей в зависимости от принятого способа расположения цистерны для воды. В случае размещения цистерны вдоль шасси кузов изготавливают из двух цельнометаллических бескаркасных тумб. Они крепятся к кронштейнам цистерны болтами. Тумбы внутри разделены на отсеки, в которых размещается ПТВ.

В различных конструкциях АЦ по их борту в тумбах может быть по 2 – 4 отсека. Отсеки снаружи закрываются дверями с замками. Двери навешивают на петлях. Двери могут быть выполнены по схеме, открывающимися вверх с подпружиненными телескопическими стойками или шторного типа.

Пространство между тумбами и задним днищем цистерны используется под насосное отделение. В случае среднего размещения насоса в кормовой части образуется отсек для ПТВ.

Размещение отсеков для ПТВ и его крепление влияет на продолжительность боевого развертывания. Различие в размещении и креплении ПТВ прослеживается на рис. 7.22, характеризующем время его снятия и прокладку рукавной линии с первым стволом. Из этого рисунка следует, что необходимо размещать отсеки и крепить ПТВ в них так, чтобы оно было одинаково доступно пожарным различного роста. Его крепление должно позволять снятие в минимальное время.

19700

2200

2000

1500

1000

500

740

Н, мм

Рис. 7.23. Расположение отсеков на АЦ:

1 – АЦП-6/3(Урал-5557);2 – АЦ-40(43202); 3 – АЦ-40(131)137;4 – АЦ-40(130)63Б; 5 – АЦ Болгарии;6 – ТLF(ГДР)

0



Н,см

0

4

3

1

2

5

Рис. 7.22. Продолжительность снятия ПТВ и подачи первого ствола пожарными различного роста:

Снятие ПТВ: 1 – на АЦ Шкода;

2 – на АЦ Ельч (Польша).

Подача первого ствола:3 – Скутенг;4 – Шкода; 5 – Ельч

, с



В современных АЦ, отсеки относительно зоны доступности для пожарных различного роста, размещены по-разному (рис. 7.23). На этом рисунке показаны зоны доступности аб (размеры 740 и 1970 мм), указана оценка в баллах различных ее частей. У ряда АЦ размещение отсеков не очень удачно.

В зависимости от размещения цистерны отсеки могут располагаться по бортам кузова (7.24, а) или по бортам, но только у кормы АЦ (7.24, б). В первом случае больший простор доступа к машине и отсекам. Во втором случае все ПТВ сосредоточено более компактно. ПТВ в отсеках этого типа расположено в выдвижных ящиках и на полках.

а

б

Рис. 7.24. Размещение отсеков

ПТВ на АЦ:

а – АЦП-6/3 (Урал 5557);б – АЦП-6/6 (Урал 5557)

Очевидно, что в этом случае необходимо более четкое выполнение обязанностей пожарными, чтобы они не мешали друг другу. Кроме того, ящики для ПТВ выдвижные.

Следовательно, появляется дополнительная операция по выдвижению ящиков и их фиксации в наклонном положении. При такой компоновке часть ПТВ размещается в выдвижном ящике в верхней части насосного отсека. Такое размещение ПТВ менее удобно, чем в случае, когда отсеки находятся вдоль бортов АЦ.

Обоснование выбора АЦ для гарнизона ГПС. Требования к АЦ и особенностям их компоновки изложены в нормах пожарной безопасности. Они являются основой для разработки технических заданий на производство новых АЦ или их модернизации. Их обосновывают специалисты ГПС. Реализуются требования в производстве. Знание этих требований, реализованных в конструкции АЦ, важно и при обосновании выбора пожарных машин для гарнизонов ГПС.

Рациональным порядком является следующее:

1. Оценивается территория по природно-климатическим условиям.

2. Устанавливается категория эксплуатации АЦ.

3. Проверяется состояние пожарной водопроводной сети и определяется наличие в регионе естественных и искусственных водоисточников.

На основании изложенного обосновывается требование к шасси АЦ, вместимости цистерны для воды. Эти факторы будут определять и численность боевого расчета. Необходимо также учитывать структуру имеющегося парка АЦ как по шасси, так и по типу двигателей. Унификация АЦ, предотвращение их многомарочности будет способствовать лучшей организации их содержания в состоянии технической готовности и обеспечения их технического обслуживания и ремонта.

7.6. Дополнительное электрооборудование

Пожарные автомобили следуют на пожары с большими скоростями, эксплуатируются в разное время суток, часто при недостаточном освещении объектов. Все это требует высокой информативности ПА, приспособленности его к использованию в различное время суток. Этим обусловлена необходимость специального, дополнительного оборудования.

Дополнительное электрооборудование включает:

приборы сигнализации, обеспечивающие информацию о движении ПА;

внешнее освещение, освещение рабочих мест и отсеков пожарного автомобиля, обеспечивающих работу пожарных в темное время суток;

дублирующие контрольно-измерительные приборы и систему пуска стартера из насосного отделения;

отопление кабины боевого расчета.

Электрооборудование АЦ, производимых предприятиями России, идентично. Поэтому рассмотрим его на примере наиболее массовых АЦ.

1

2

3

4

5

7

6

8

9

16

15

14

13

12

11

10

11в

11г

11д

11б

11а

Дополнительное оборудование АЦ-40-(131)137. Размещение дополнительного оборудования показано на рис. 7.25.

Рис. 7.25. Дополнительное оборудование пожарной автоцистерны АЦ-40(131)137:

1 – щиток приборов у водителя; 2 – фара-прожектор; 3 – сигнальные фары; 4, 5 и 8 – плафоны освещения; 6 – щиток приборов насосного отделения; 7 – задние фонари; 9 – задняя фара; 10 – лампа подсвета вакуумного клапана; 11 – датчик для определения количества воды в цистерне; 12 – выключатели отсеков кузова; 13 – диоды; 14 – биметаллический прерыватель; 15 – блок предохранителей; 16 – противотуманные фары

Выключатели освещения и сигнальные лампы размещены в кабине водителя на ее передней стенке на щитке 1. Фара-прожектор 2 обеспечивает освещение объекта. Она установлена на специальном кронштейне, позволяющем изменять ее положение в вертикальной и горизонтальной плоскостях. Освещение места работы у насосного отделения и водоема производится задней фарой 9. Она укрепляется на кронштейне пенала, позволяющем изменять ее положение в горизонтальной плоскости. На пожарных автомобилях применяют фары типа ФТ-1Б с электролампами А-12-50-21 мощностью 41 Вт или ФТ-304 с электролампами А-12-32 мощностью 27 Вт. Сигнальные фары 3 подают прерывистые световые сигналы синего цвета. Они установлены на крыше пожарного автомобиля. Освещение кабины водителя и салона боевого расчета, отсеков кузова и насосного отделения осуществляется плафонами 4, 5 и 8. Для этой цели используются плафоны ПК-201 с лампами А-12-3 мощностью 5,9 Вт.

Выключатели и контрольные лампы приборов насосного отделения размещены на щитке 6 насосного отделения. Задние фонари 7 включаются включателями автомобиля.

Подсвет вакуумного клапана производится лампой 10 (А-12-1 или А-12-1,5), помещенной в патрон ПП-1-200. Ее включение облегчает определение поступления воды в насосе при постановке пожарного автомобиля на водоисточник или заполнении его из цистерны.

Датчики 11 используются для определения количества воды в автоцистерне. Датчик состоит из стальной трубки 11д, внутри которой размещен гидроконтакт 11г на изоляторах 11а и 11в. Плотность постановки датчиков в цистерну обеспечивает прокладка 11б. Вода, заполняющая полость между гидроконтактами 11г и трубкой 11д, замыкает электрическую цепь. При этом загораются контрольные лампочки, установленные на щитке 6.

В цистерне установлены 3 датчика, а на щитке 6 имеются три контрольные лампочки, показывающие полную, половину и четверть заправки цистерны водой.

Выключатели 12 освещения (тип ВК-2-А2) отсеков кузовов включают свет при открывании дверцы отсека. Параллельно им включены диоды 13 (тип Д-202).

Биметаллический прерыватель 14 (тип РС-57-Б) обеспечивает работу сигнальных фар. Он установлен на блоке предохранителей 15 (Пр-10А), прикрепленном к передней стенке кабины со стороны водителя.

Освещение дороги во время тумана производится противотуманными фарами 16 типа ФТ-119. В них устанавливаются лампы А-12-50-40(40,5 Вт) или А-12-21-2 (19 Вт).

Щиток приборов насосного отделения (рис. 7.26). Щиток закреплен на стенке с правой стороны насосного отделения. На нем имеются: контрольные лампы 1 – 3, указывающие полную заправку емкости, половину и одну четверть емкости; контрольная лампа 4, включающаяся при нагреве воды в системе охлаждения выше 115 оС; контрольная лампа 5, включающаяся при уменьшении давления масла в системе смазки двигателя; включатель 6 для включения контрольных ламп 1 – 3 уровня воды в цистерне; включатель 7 для включения плафонов и подсвета в вакуумном клапане; кнопка 8 дистанционного запуска стартера.

Контрольные лампы 4 и 5 могут сигнализировать и состояние систем охлаждения двигателя и смазки только при условии, если у водителя переключатель будет поставлен в положение «насосный отсек».

Приборы в кабине водителя. Выключатели и сигнальные лампы в кабине водителя размещены так, как показано на рис. 7.27. На щитке в насосном отделении и в кабине водителя установлены выключатели ВК-57. При их включении включаются потребители энергии и загораются контрольные лампочки. Они указывают на то, что приборы освещения включены.

Рис. 7.26. Щиток приборов насосного отделения:

1–3 – лампы-указатели количества воды в цистерне; 4 – лампа, сигнализирующая о перегреве воды в системе охлаждения; 5 – лампа, сигнализирующая о снижении давления в системе смазки; 6 – включательлампы подсвета вакуумного клапана; 7 – включатель плафона насосного отсека; 8 – кнопка стартера

1

2

3

4

5

6

7

8



Рис. 7.27. Щиток приборов у водителя:

1–3 – сигнальные лампы включателей; 4 – включатель сигнальных фар проблесковых маяков; 5 – включатель задней фары; 6 – включатель фары прожектора; 7 – переключатель «кабина-насосный отсек» сигнальных ламп систем охлаждения и смазки; 8 – включатель освещения кузова

1

2

3

8

7

6

5

4



Принципиальная схема электрооборудования. Принципиальная схема дополнительного оборудования представлена на рис. 7.28. В этой схеме различают три электрические цепи. Провод от аккумуляторной батареи (+) подводит электрический ток к блоку предохранителей (БП). В этом блоке все плавкие предохранители рассчитаны на прохождение электрического тока до 10 А. Рассмотрим все цепи от блока предохранителей до соединения провода на массу (аккумуляторной батареи).

Электрическая цепь № 1. В эту цепь параллельно включены ряд потребителей. Включателем В1 (см. поз. 6 на рис. 7.27) включается фара прожектора Ф1. Включателем В4 (см. поз. 6, 7 на рис. 7.26) включаются плафоны Л5 и Л6 насосного отделения и лампа Л7 подсвета вакуумного клапана. Включателем В5 включаются лампы Л8-Л10, указывающие уровень воды в цистерне. При заполненной цистерне замкнуты все датчики К1, К2 и К3. Все лампочки Л8-Л10 будут включены, по мере уменьшения количества воды лампочки будут выключаться.

172720804545В эту же электрическую цепь включены сигнальные лампы Л15 аварийного перегрева воды и Л16 минимального давления масла в двигателе. В насосном отсеке эти лампы горят только в случае, когда

реключатель П (см. поз. 7 на рис. 7.27) включен в положение «насосный отсек». Лампа Л15 загорается, если температура охлаждающей жидкости равна 113 оС. Лампа Л16 загорается при понижении давления масла в системе смазки двигателя до 30–60 кПа.

Подсветка вакуумного клапана



полный



правый



13

левый

правый



левый



Рис. 7.28. Принципиальная схема дополнительного электрооборудованияна АЦ-40(131)137

Электрическая цепь № 2. Эта цепь образована включением проблесковых маяков Ф2 и Ф3 с прерывателем ПР1. Включается цепь включателем В2 (см. поз. 4 на рис. 7.27) и контролируется включением лампы Л1 (см. поз. 8 на рис. 7.27).

Электрическая цепь № 3. В эту цепь включены задняя фара Ф4 (см. поз. 4 на рис. 7.25) с контрольной лампой Л18 (см. поз. 4 на рис. 7.26). Включается фара включателем В3 (см. поз. 4 на рис. 7.27).

На панели водителя (см. поз. 8 на рис. 7.27) находится включатель В6. Он предназначен для обеспечения питания плафонов освещения отсеков кузова Л4 и Л11-Л13. Включаются эти плафоны выключателями ВК1-ВК4 (см. поз. 12 на рис. 7.25). При открывании отсека срабатывают включатели и загорается соответствующая лампа плафона. Одновременно через диод Д (см. поз. 13 на рис. 7.25) будет подведен электрический ток к лампочке Л14 (см. поз. 1 на рис. 7.27). Диоды Д исключают прохождение электрического тока через лампы плафонов закрытых отсеков кузова, когда другие отсеки открыты.

Цепь кнопки пуска стартера в насосном отсеке, а также задние фонари ФП и ФЛ включены в систему электрооборудования базового автомобиля.

Некоторые типы приборов электрооборудования пожарных автомобилей указаны в табл. 7.2.

Таблица 7.2

Обозначение по схеме Тип прибора

Включатель В1-В6

Включатель ВК1-ВК4

Фара Ф1,Ф4

Плавкий предохранитель

Биметаллический прерыватель ПР1

Лампы

Диоды Д1-Д4

Плафоны Л11-Л12

Электролампы 10

Кнопка стартера

Контрольная лампа Л14

Контрольные лампы Л8-Л10 ВК-57

ВК2-А2

Фара ФГ-16, лампа А12-50, 41 Вт или ФГ-391, лампа А12-32, 27 Вт

Пр10-А

РС57-Б

А 12-1

Д202

ПК201, лампы А12-3, 5.9 Вт

А12-1 в ПП1-200

ВК322

ПД200Е

ПД20Д

Соединительные провода дополнительного электрооборудования марки ПГВА-1,5 мм2 и ПГВА-4 мм2 заключены в пластикатовые трубки. Трубки с проводами крепятся к элементам конструкции пожарного автомобиля металлическими скобами.

Отдельные участки электроцепей соединяются штепсельными разъемами Ш типа ШР32П12ЭШ1.

Описанная выше принципиальная схема дополнительного электрооборудования применяется практически на всех автоцистернах на базе автомобилей ЗИЛ-131. Однако на отдельных типах пожарных автоцистерн имеются изменения.

На ряде автоцистерн нового поколения, особенно производства ОАО «Пожтехника» (г. Торжок), функции дополнительного электрооборудования значительно расширены. Рассмотрим их на примере АЦ-7-40(53213).

Дополнительное электрооборудование АЦ-7-40(53213). Питание потребителей автоцистерны осуществляется постоянным током, напряжение 24 В от бортовой сети шасси. Проблесковые маяки запитываются от аккумуляторов шасси напряжением 12 В.

Все электрооборудование можно разделить на три группы.

В кузове АЦ установлены блок связи, щиток управления, лампы освещения отсеков. Датчики уровня воды и пенообразователя находятся в цистерне для воды и в баке пенообразователя.

В кабине водителя размещается блок управления лафетным стволом, щиток контроля, СГУ-80, блок связи, блок связи водителя и лампа сигнализации об открытии дверей.

На кабине шасси смонтирована фара-прожектор и маяки с громкоговорителем СГУ-80.

Электрооборудование обеспечивает:

управление механизмами;

контроль функционирования механизмов и систем;

требуемые условия работы боевых расчетов.

Соответствующие тумблеры включения механизмов и сигнализаторы функционирования их и других систем сосредоточены на щитке приборов и щитке управления (рис. 7.29) и на щитке контроля (рис. 7.30).

Щиток приборов и щиток управления устанавливается в насосном отсеке. Он служит для контроля за работой механизмов автоцистерны, дистанционного управления двигателем, включения КОМ водяного и масляного насоса, а также контроля уровня воды и пенообразователя.

На щитке приборов установлены вакуумметр и манометр для контроля работы центробежного насоса, счетчик моточасов и тахометр.

На щитке управления находятся тумблер включения питания, сцепления и КОМ центробежного насоса. Кнопкой «Пуск двигателя» осуществляется дистанционный его пуск. В правой части расположены светодиоды контроля уровня воды в цистерне и пенообразователя в пенобаке.

Защита цепей осуществляется предохранителями.

Щиток контроля установлен в кабине водителя. Он служит для управления и контроля за работой КОМ привода центробежного и масляного насоса, вентиля поступления воды в лафетный ствол, включения фар, уровня воды и пенообразователя.

10

8

6

7

9

4

5

3

2

1



Рис. 7.29. Щиток приборов и щиток управления:

1 – лицевая панель; 2, 4 – мановакуумметры; 3 – счетчик времени; 5 – тахометр;6 – панель щитка управления; 7 – светодиоды; 8 – кнопка; 9 – предохранитель;10 – тумблер

1

179705127635



2

4

5



3



Рис. 7.30. Щиток контроля:

1 – лицевая панель; 2 – светодиоды; 3 – предохранитель; 4 – тумблер;

5 – вентиль

Размещение тумблеров различного назначения показано на рис. 7.30.

В случае если на автоцистерне нет лафетного ствола, тумблер «Вентиль» будет заглушен. При необходимости привода масляного насоса (например, на автоцистерне с лестницей) будет разблокирован тумблер КОМ-масло.

Раздел 3

ОСНОВНЫЕ И СПЕЦИАЛЬНЫЕ ПОЖАРНЫЕ АВТОМОБИЛИ

Глава 8

ОСНОВНЫЕ ПОЖАРНЫЕ АВТОМОБИЛИ ОБЩЕГО ПРИМЕНЕНИЯ

Основные пожарные автомобили – автомобили тушения – предназначены для доставки к месту вызова личного состава, огнетушащих веществ и тушения пожаров. К ним относятся: пожарные автоцистерны, автонасосы, автомобили первой помощи, мотопомпы, приспособленная техника предприятий.

Подразделения ГПС оснащаются только автоцистернами, автонасосами, пожарными автомобилями первой помощи и мотопомпами. Остальная пожарная техника используется в соответствующих министерствах и будет рассмотрена специально.

8.1. Пожарные автоцистерны и автонасосы

Пожарные автоцистерны (АЦ) предназначены для тушения пожаров, доставки к месту вызова боевых расчетов, огнетушащих веществ (ОТВ) и пожарно-технического вооружения (ПТВ). На них в качестве ОТВ используется вода и пенообразователь для тушения пеной.

Пожарные АЦ используются как самостоятельные боевые единицы с подачей воды из собственной цистерны, открытого водоема или водопроводной сети. Может использоваться также пенообразователь как из бака АЦ, так и из постороннего источника.

Для выполнения основных функций пожарные надстройки АЦ включают цистерны для воды и баки для пенообразователя, пожарные насосы с трансмиссиями к ним, водопенные коммуникации и приводы управления механизмами.

Все элементы пожарных надстроек размещаются в кузовах, смонтированных на шасси грузовых автомобилей (рис.8.1).

В ГПС используется большое число различных модификаций АЦ, сооруженных на полноприводных или неполноприводных шасси грузовых автомобилей производства различных заводов. Их пожарные надстройки укомплектованы элементами одинакового назначения. Однако на них используются пожарные насосы с различными характеристиками, цистерны и пенобаки с различной вместимостью, водопенные коммуникации могут быть по-разному скомпонованными. Поэтому становится целесообразным изучение типичных элементов пожарных надстроек различных АЦ.

1

2

3

4

5

6



Рис. 8.1. Автоцистерна пожарная АЦП-6/6-40(Урал-5557-10):

1 – шасси автомобиля Урал; 2 – ствол лафетный; 3 – цистерна; 4 – отсек размещения ПТВ; 5 – насосный отсек; 6 – насосная установка

Цистерны и баки для огнетушащих веществ. Цистерны для воды изготовляют вместимостью от 0,8 до 9 м3. Их вместимость является основой для классификации АЦ. При вместимости цистерн до 2 м3 АЦ называют легкими. При вместимости от 2 м3 и до 4 м3 – средними, а при вместимости 4 м3 и более – тяжелыми.

Для конструирования цистерн используются углеродистые стали. Внутренние их поверхности защищают от коррозии специальными антикоррозионными покрытиями. На некоторых АЦ для этой цели используется анодная защита.

Для предотвращения замерзания воды в зимнее время цистерны оборудуются обогревом. Он может осуществляться автономными теплогенераторами, теплом отработавших газов двигателя или электрическими обогревателями. На некоторых АЦ устанавливаются цистерны с теплоизоляционным слоем, например полиуретаном.

Заводы также изготовляют цистерны из стеклопластика. Такие цистерны не требуют защиты от коррозии, они легче цистерн из углеродистой стали. Кроме того, они характеризуются хорошими теплозащитными свойствами.

К конструкциям цистерн предъявляется ряд общих требований. Для осмотра и технического обслуживания цистерны должны иметь люки диаметром более 450 мм. Внутри цистерн для гашения колебаний жидкости должны устанавливаться волноломы. Цистерны должны быть приспособлены для заполнения водой насосом АЦ или другим насосом. В них необходимы устройства, предотвращающие создание избыточного давления при их заполнении, обеспечивающие непрерывный или дискретный контроль за их заполнением водой, а также полным сливом её.

В поперечном сечении цистерны могут иметь эллиптическую форму или форму, близкую к квадратной, но с закругленными углами. Цистерны с эллиптической формой сечения устанавливают на пожарных автомобилях на шасси ГАЗ и др. Установка таких цистерн позволяет более полно использовать ширину шасси и способствует снижению центра массы автомобиля.

Цистерны различаются размерами, размещением люков, отстойников, деталей крепления и т.д., но все же они имеют много общих элементов. Нарис. 8.2 показано устройство цистерны на пожарных автомобиляхАЦ-40(131)137, АЦ-40(130)63Б и др. Обечайка 15 с обеих сторон закрыта приваренными днищами. Над верхней частью обечайки из отверстия выходит установленная в цистерне контрольная труба 2. Сверху она закрыта крышкой 1. При переполнении цистерны лишняя вода по этой трубе будет выливаться.

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

22

7

18

17

16

14

15

13



Рис. 8.2. Цистерна:

1, 4 – крышки; 2 – контрольная труба; 3 – горловина; 5 – кронштейн; 6 – труба;7 – штуцер; 8 – заборная труба; 9 – отстойник; 10 – рычаг; 11 – кран; 12 – стремянка;13 – волнолом; 14 – крышка горизонтального люка; 15 – обечайка; 16 – передняя опора; 17, 20 – амортизаторы; 18 – болт; 19 – задняя опора; 21 – брусок; 22 – гидроконтакт

На верхней части цистерны имеется горловина 3. Она обеспечивает доступ внутрь цистерны для ее осмотра и ремонта. Горловина закрывается крышкой 4 с резиновым уплотнением.

В днище имеется отстойник 9. Слив отстоя производится через кран 11, который открывается с помощью рычага 10.

Забор воды осуществляется по трубе 8. На заднем днище цистерны на кронштейне 5 установлен тахометр. Штуцер 7 и труба 6 служат для подсоединения водопенных коммуникаций.

В переднем днище имеется горловина горизонтального люка 14. Для уменьшения силы удара жидкости о стенки цистерны при изменении скорости движения автомобиля установлены волноломы. Для измерения уровня заполнения цистерны водой установлены гидроконтакты 22.

7

8

6

5

4

3

2

1

9

10

11

Рис. 8.3. Цистерна из стеклопластикадля АЦ на шасси КамАЗ:

1 – рама шасси; 2 – кронштейн; 3 – хомут; 4 – цистерна; 5 – ребро цистерны; 6 – люк; 7 – заливной патрубок; 8 – датчики уровня воды; 9 – патрубок для соединения снасосом; 10 – сливной патрубок;11 – конец сливной трубы

Цистерна закрепляется в трех точках. В передней части опора 16 шарнирная, к ней болтами 18 закреплены амортизаторы 17. В задней части двумя опорами 19 через амортизаторы 20 на брусках 21 цистерна устанавливается на раму и крепится стремянками 12.

Цистернами такого типа оборудованы многие АЦ на шасси ЗИЛ, Урал и др.

Другой тип цистерн используется на АЦ-3-40(4326), АЦ-5-40(4925) и др. Основой их является (рис. 8.3) корпус 4 с ребрами жесткости 5 со скругленными углами. В верхней части цистерны имеется люк 6, предназначенный для осмотра и очистки внутренней полости. Люк закрывается крышкой 6, к которой приварен патрубок 7 для наполнения цистерны водой.

В нижней части цистерны имеется патрубок 9 для соединения ее с насосом, сливной патрубок 10 и нижний конец сливной трубы 11.

Цистерна имеет пять датчиков 8 уровня воды, представляющих собой пластмассовую пробку с впаянными в нее электродами. При достижении воды уровня датчиков происходит замыкание электрической цепи и на щите приборов загорается соответствующий светодиод. Световоды сигнализации уровня воды в цистерне расположены на панелях приборов, установленных в насосном отсеке и кабине водителя.

Цистерна 4 установлена на кронштейнах 2, прикрепленных к балкам рамы шасси 1. Крепление цистерны осуществляется хомутами 3, закрепленными болтами с гайками на кронштейнах 2.

Баки для пенообразователя изготовляют вместимостью от 0,08 до 1 м3, они должны составлять не менее 6 % от вместимости цистерны. Их конструируют из нержавеющей стали. Трубопроводы и арматура к ним должны изготовляться из коррозионностойких по отношению к пенообразователям материалам. Конструкция пенобаков должна исключать пролив пенообразователя из баков при движении АЦ и при его подаче в насос. Конструктивными мерами или компоновочными приемами должна обеспечиваться положительная температура пенообразователя в баках.

1

2

3

4

5

6

7

8



Рис. 8.4. Бак пенообразователя:

1 – днище; 2 – обечайка; 3 – горловина; 4 – крышка; 5 – волнолом; 6 – отстойник; 7 – заглушка; 8 – штуцер

На современных АЦ пенобаки могут иметь разную конструкцию. На рис. 8.4 представлен пенобак цилиндрической формы с окружностью в поперечном сечении. Бак состоит из обечайки 2 с двумя днищами 1. Бак заполняют пенообразователем через горловину 3, закрываемую крышкой 4. Отстой из отстойника 6 сливают через отверстие, закрываемое пробкой 7. Внутри бака имеются волноломы 5. Пенообразователь поступает в насос по трубопроводу, подсоединенному к штуцеру 8.

На АЦ нового поколения баки в поперечном сечении имеют форму квадрата с закругленными углами (рис. 8.5). На верхней части бака 4 установлена заливная горловина 5 с присоединенной к ней рукавной головкой 6. Внизу закреплен вентиль 7 для поступления пенообразователя к насосу.

Бак крепится хомутами 3 гайкой 2 к подрамнику.

Пенобаки размещают, как правило, в насосном отсеке.

5

6

7

1

2

3

4

Рис. 8.5. Бак для пенообразователя:

1 – подрамники; 2 – гайка; 3 – хомут; 4 – бак; 5 – заливная горловина;6 – соединительная головка; 7 – вентиль

Приводы пожарных насосов. Кинематические схемы приводов ПН одинаковы на всех АЦ. Они включают соединенные последовательно с двигателем шасси коробку отбора мощности, карданную передачу и промежуточную опору. В приводах пожарных насосов автоцистерн на шасси КамАЗ используются дополнительные зубчатые передачи в качестве мультипликаторов.

В карданных передачах используется от одного до трех карданных валов базового шасси, соединяемых промежуточными опорами.

Коробка отбора мощности, промежуточные опоры и редукторы специально разработаны для автоцистерн.

Коробки отбора мощности (КОМ). Они, как правило, механические, одноступенчатые.

КОМ АЦ на шасси ГАЗ установлена на боковом люке раздаточной коробки. От КОМ крутящий момент передается на насос через два карданных вала, соединенных промежуточной опорой. Ее конструкция представлена на рис. 8.6.

Промежуточная шестерня 8 находится в постоянном зацеплении с шестерней первичного вала раздаточной коробки. Шестерня 8 вращается на двух подшипниках 11, закрепленных на оси 10. Ось фиксируется стопорной пластиной 9. На шлицах вала 5 может с помощью штока 3 перемещаться шестерня 6. При таком ее положении, как показано на рисунке, мощность будет передаваться на фланец 13 соединительной муфты. Передний конец штока 3 соединен тягой с рычагом включения, который находится в кабине.

Перед включением пожарного насоса рычаг раздаточной коробки необходимо поставить в нейтральное положение и включить прямую передачу на коробке передач.

На крышке люка 1 смонтирован змеевик (на рисунке не показан) для охлаждения коробки отбора мощности во время ее работы на пожарном насосе. Змеевик включен в дополнительную систему охлаждения АЦ. Охлаждение осуществляется водой из пожарного насоса.

1

2

3

4

5

6

7

8

9

10

11

13

12



Рис. 8.6. Коробка отбора мощности:

1 – крышка люка; 2 – корпус коробки; 3 – шток; 4 – шариковые подшипники; 5 – вал; 6 – ведомые шестерни; 7 – крышка подшипника; 8 – шестерня промежуточная;9 – пластина стопорная; 10 – ось; 11 – подшипник; 12 – манжета; 13 – фланец

5

6

7

4

3

2

1

10

11

12

9

8



Рис. 8.7. КОМ автомобиля на шасси ГАЗ:

1 – ведущий вал с муфтой; 2 – зубчатое колесо; 3 – ось; 4 – промежуточное зубчатое колесо; 5 – ведомые шестерни к потребителю энергии; 6 – ведомый вал с муфтой;7 – зубчатая муфта; 8 – зубчатое колесо; 9 – ведомый вал с муфтой к трансмиссииавтомобиля; 10 – шестерня; 11 – шток; 12 – теплообменник

Конструкция КОМ, установленных на ряде пожарных автомобилей, имеет некоторые особенности (рис. 8.7). Ведущий вал 1 соединен с первичным валом коробки передач. На нем закреплена шестерня 10, на которой находится зубчатая муфта 7. На роликовом подшипнике установлено зубчатое колесо 2. С ним в зацеплении постоянно находятся зубчатые колеса 4 и 5. В положении, указанном на рисунке, КОМ выключена. При перемещении штока 11 механизма управления в левую сторону ведущая зубчатая муфта 7 будет соединена с зубчатым колесом 2. Таким образом, крутящий момент будет передаваться зубчатыми колесами 4 и 5 к ведомому валу 6 с муфтой к потребителю. При перемещении штока 11 в правую сторону зубчатая муфта 7 соединит зубчатые колеса 10 и 8. При этом вращающий момент будет подведен к ведущему валу 9 с муфтой и к трансмиссии автомобиля.

Охлаждение КОМ осуществляется водой от пожарного насоса, подводимой к теплообменнику 12, установленному в масляной ванне.

В некоторых конструкциях АЦ-0,8-30/2(530104) теплообменник в виде радиатора устанавливают на коробке передач, к которой присоединены КОМ. Теплообменник и коробка передач разделены разделительной ребристой перегородкой. Нагретое масло в коробке передач постоянно отбрасывается вращающимися шестернями на охлажденную перегородку радиатора и тем самым снижает его температуру.

КОМ АЦ на шасси ЗИЛ. Механическая, одноступенчатая с передаточным числом 1,176 (рис. 8.8).

Детали КОМ заключены в чугунный корпус 2. Он же является крышкой коробки передач. Включение требуемой передачи производится перемещением вилок переключения 13 на штоках 1 рычагом 3. Основные детали КОМ: ось 17, промежуточная шестерня 14, ведомая шестерня 5, первичный вал 18 и вторичный вал 8, зубчатая муфта 7, подшипники 6, сальник 10, фланцевая муфта 11. Ось 17 закреплена в корпусе КОМ. На ней на роликовых конических подшипниках установлена промежуточная шестерня 14. Она находится в постоянном зацеплении с шестерней ведущего вала 18 шестерней коробки передач.

Осевой зазор в конических роликовых подшипниках должен находиться в пределах 0,04 – 0,11 мм. Его измеряют индикатором по осевому люфту промежуточной шестерни 14. Устанавливается требуемый зазор с помощью картонных прокладок под фланец, крепящий ось.

Ведомая шестерня 5 с помощью шпонки закреплена на первичном валу 18. В шестерне имеется радиальное отверстие, совмещенное с отверстиями в теле вала. По ним подводится масло к подшипнику. Масло выдавливается при контакте боковых поверхностей зубьев промежуточной 14 и ведомой 5 шестернями.

3

4

2

1

18

6

17

16

15

14

13

13

13

12

11

10

9

6

8

5

6

6

7



Рис. 8.8. КОМ-68Б автоцистерны на шасси ЗИЛ:

1 – шток переключения передач; 2 – корпус; 3 – рычаг переключения передач; 4 – вилка включения; 5 – шестерня, Z =17; 6 – подшипники; 7 – зубчатая муфта; 8 – вторичный вал; 9 – крышка; 10 – сальник; 11 – фланцевая муфта; 12 – рукоятка;13 – вилка переключения передач; 14 – шестерня, Z = 41(40); 15 – коническийроликоподшипник; 16 – стержень включения насоса; 17 – ось шестерни; 18 – первичный вал

В КОМ используются цилиндрические шестерни с косыми зубьями. Возникающие при их вращении осевые усилия воспринимаются коническими роликовыми подшипниками 15 и шариковыми подшипниками.

Вторичный вал 8 опирается на подшипники. Соединение первичного и вторичного валов осуществляется зубчатой муфтой 7. Ее включение производится вилкой 4, закрепленной на стержне включения насоса 16, перемещаемого рукояткой 12. Фиксирование положения вилки включения насоса производится стопором. Таким образом, предотвращается самопроизвольное включение и выключение соединительной муфты.

На выходном конце вторичного вала закреплена на шлицах фланцевая полумуфта. С ее помощью этот вал соединяется с карданным валом привода насоса. Предотвращение вытекания масла осуществляется резиновой манжеткой (сальником) 10, закрепленной на крышке 9.

КОМ фиксируется двумя установочными штифтами, размещенными на верхнем фланце коробки передач. Осевой зазор между вершинами зубьев и впадинами зацепляющихся шестерен обеспечивается подбором толщины картонных прокладок между фланцами КОМ и коробки передач. При правильно подобранной толщине прокладок шестерни должны свободно вращаться.

Обкатку КОМ производят в течение 10 ч при частоте вращения вала насоса 2000 мин-1. Воду подают насосом из открытого водоема двумя стволами с насадкой 19 мм. Затем еще в течение 10 ч работают при частоте вращения вала насоса 2400 мин-1.

Порядок включения КОМ при установке пожарного автомобиля на водоисточник следующий: выжать педаль сцепления; рычаг коробки передач поставить в нейтральное положение; рычаг КОМ перевести «на себя»; отпустить педаль сцепления.

При движении пожарного автомобиля необходимо выжать педаль сцепления, перевести рычаг КОМ «на себя».

Коробка отбора мощности КОМ-ПМ принципиально не отличается от КОМ-68. Она устанавливается на пожарных автомобилях АЦ-40(43202). Конструктивные особенности заключаются в следующем. Корпус КОМ состоит из двух частей. В нижней части размещен механизм переключения передач, а также ось, на которой установлена промежуточная шестерня.

В верхней части корпуса на подшипниках установлен ведомый вал. На этом валу размещена ведомая шестерня. Она вращается на подшипнике скольжения и находится в постоянном зацеплении с промежуточной шестерней. На шлицах ведомого вала установлена соединительная муфта. При перемещении рычага «на себя» ползун вилкой соединяет муфту 7 с венцом шестерни. Фиксатор предотвращает самовыключение муфты.

Смазывание поверхностей трения деталей осуществляется разбрызгиванием масла. К подшипникам качения со стороны, противоположной выходу ведомого вала, масло подается шестеренчатым насосом коробки передач.

Обкатка КОМ производится в течение 4 ч под нагрузкой и 2 ч без нагрузки. Включение ее аналогично включению КОМ-68.

КОМ АЦ на шасси КамАЗ механические, одноступенчатые, одинаковые на всех модификациях шасси.

В отличие от ранее рассмотренных валы и оси этих КОМ расположены не в вертикальной плоскости, а как схематически показано на рис. 8.9. Особенностью их является также то, что на них предусмотрен отбор мощности двумя потребителями – пожарным насосом и приводом, например насосом в гидравлических системах управления.

На рис. 8.9 представлена кинематическая схема КОМ в развернутом виде. На ее оси 5, закрепленной в корпусе, свободно вращается на шариковых опорах зубчатое колесо 4. Оно находится в постоянном зацеплении с зубчатым венцом первичного вала коробки передач и зубчатыми колесами 3 и 6, свободно вращающимися на валах 2 и 7. Валы 2 и 7, в свою очередь, свободно вращаются на шариковых опорах, закрепленных в корпусе КОМ. Кроме того, как одно целое с валами изготовлены и зубчатые колеса. Соединение зубчатых венцов зубчатых колес 4 и 6 с зубчатыми колесами валов передвижной муфтой с помощью скалки обеспечит передачу мощности от коробки передач через КОМ и фланец 9 муфты к карданному валу, а затем к пожарному насосу.

10

2

3

4

5

6

7

9

8

2

7

5

1

Рис. 8.9. КОМ автоцистернына шасси КамАЗ:

1, 8 – скалки с вилками включения КОМ; 2, 7 – валы; 3, 4 и 6 – зубчатые колеса; 5 – ось; 9 и 10 – фланцы муфт

Привод управления КОМ – электро-пневматический.

Пневмоклапан с электрическим управлением предназначен для включения и выключения КОМ. При включении тумблера «КОМ» на панели управления электромагнит клапана включит поступление воздуха из пневмосистемы в пневмоцилиндр КОМ. Штоки пневмоцилиндров соединены со скалкой 8 и 1. При включении КОМ загорается светодиод на панели управления в насосном отсеке и в кабине водителя.

Все КОМ смазываются трансмиссионными маслами, используемыми в коробках передач шасси базовых автомобилей. На поверхности трения масло поступает в виде масляного тумана или в каплеобразном состоянии, которые образуются в результате диспергирования масла при вращении зубчатых колес.

Промежуточные опоры. Промежуточные опоры предназначены для сопряжения карданных валов в карданных передачах. Они бывают с длинными и короткими валами.

Промежуточные опоры с длинными валами устанавливаются на всех АЦ, за исключением АЦ на шасси ГАЗ. Устройство промежуточной опоры показано на рис. 8.10. Вал опоры 6 вращается на двухрядных радиально-сферических подшипниках 4. Применение этих подшипников допускает некоторый перекос валов, что облегчает монтаж приводов.

В приводах АЦ на шасси ГАЗ применяются промежуточные опоры с короткими валами (рис. 8.11). Вал 2 установлен в корпусе опоры 1 на двух однорядных шариковых подшипниках 3. Карданные валы фланцами муфт соединяются с фланцами 6 опоры.

Промежуточные опоры не применяются на АЦ со средним расположением пожарного насоса. При этом мощность от двигателявнутреннего сгорания передается на вал пожарного насоса одним кар-данным валом.

1

2

3

4

5

6

7

8



Рис. 8.10. Промежуточная опора с длинным валом:

1 – муфта фланца; 2, 7 – сальники; 3 – корпус подшипника; 4 – подшипник; 5 – крышка; 6 – вал; 7 – манжета; 8 – масленка

10

1437005123190

7

8

9



5



6

4

3

2

1



Рис. 8.11. Промежуточная опора с коротким валом:

1 – корпус; 2 – вал; 3 – подшипники; 4 – крышки; 5 – сальники; 6 – фланцевая муфта;7 – грязеотражатель; 8 – масленка; 9 – прокладка; 10 – стопорное кольцо

Дополнительные зубчатые передачи. Дополнительные передачи применяются только на АЦ, сооружаемых на шасси КамАЗ. На АЦ с пожарными насосами ПЦНВ 4/400 для повышения частоты вращения вала насоса применяется двухступенчатый мультипликатор, изображенный на рис. 8.12. В корпусе 1 установлены два кронштейна 2 шариковых подшипников качения. На этих подшипниках и таких же подшипниках, установленных в корпусе 1, размещены валы 3 и 9 с фланцами муфт. С валом 3 соединяется карданный вал от КОМ, а с валом 9 – вал пожарного насоса. Зубчатые колеса на валах закреплены шпонками. На валу 5 установлены два зубчатых колеса 6 и 7. Каждая пара зубчатых колес имеет передаточное отношение, близкое к 1,7. Это позволяет повышать обороты вала насоса до6400 об/мин. Расположен механизм в заднем отсеке кузова автоцистерны.

6

7

8

5

4

3

2

1

Рис. 8.13. Одноступенчатый мультипликатор

1 – корпус; 2, 6 – валы; 3, 5 и 7 – зубчатые колеса; 4 – ось; 8 – фланец муфты к карданному валу насоса

3

4

5

8

9

1

2

7

6

Рис. 8.12. Двухступенчатыймультипликатор:

1 – корпус; 2 – кронштейны;3, 5 и 9 – валы;4, 6, 7 и 8 – зубчатые колеса

На АЦ с другими типами пожарных насосов в систему привода входит шестеренчатый механизм мультипликатор с паразитным колесом (рис. 8.13). К фланцу муфты на валу 2 присоединяется карданный вал от КОМ, а к фланцу муфты 8 – карданный вал к насосу. Передаточное число механизма равно 1,7. Зубчатые колеса 3 и 7 закреплены на валах 2 и 6 шпонками. Ось 4 закреплена в корпусе 1. Паразитное зубчатое колесо 5 вращается на оси 4.

В качестве опор использованы роликовые конические подшипники качения. Этот механизм применен для экономичности работы двигателя шасси. Это обусловлено тем, что на шасси КамАЗ установлены дизели. Частота вращения вала дизеля близка к требуемой частоте вращения вала пожарного насоса. Поэтому применение механизма с повышением частоты вращения (мультипликатора) обеспечит потребление мощности при более низких и, следовательно, более экономичных скоростных режимах эксплуатации двигателя.

8.2. Автомобили насосно-рукавные пожарные

Автомобили насосно-рукавные пожарные (АНР) принципиально отличаются от АЦ тем, что на них не имеется цистерны с водой. Поэтому они могут подавать воду на очаг пожара или из открытого водоема, или от водопроводной сети. Подачу на очаг пожара воздушно-механической пены возможно производить с использованием вывозимого пенообразователя или с забором его из посторонней емкости.

Пожарные насосы, система дополнительного охлаждения, вакуумная система, коробка отбора мощности и газоструйный вакуумный аппарат аналогичны тем, которые установлены на пожарных АЦ.

Наиболее распространенным является АНР-40(130) модель 127 (рис. 8.14).

10

1

2

3

4

5

6

7

5

8

9



Рис. 8.14. Автомобиль пожарный АНР-40(130)127:

1 – шасси; 2 – кабина боевого расчета; 3 – всасывающие рукава; 4 – кузов; 5 –отсеки ПТВ; 6 – рукавная катушка; 7 – запасное колесо; 8 – опорный патрубок; 9 – патрубок для подачи пенообразователя; 10 – всасывающий патрубок

Он обустроен цельнометаллической кабиной на 9 мест, цельнометаллическим кузовом, пожарным оборудованием. Особенность компоновки состоит в том, что пожарный насос ПН-40УА расположен в кабине боевого расчета. Привод к нему осуществляется от КОМ, установленной на коробке передач через короткий карданный вал (рис. 8.15). На этом же рисунке изображена схема дополнительного охлаждения двигателя и коробки передач.

От линии дополнительного охлаждения двигателя и коробки передач имеются ответвления 7 и 8 для орошения топливного бака. Система орошения включается вентилем 5. Змеевик теплообменника двигателя последовательно соединен с аналогичным змеевиком коробки передач и соединен трубопроводами 1 и 2 со всасывающей и напорной полостями насоса. Вода из двигателя через корпус теплообменника поступает в радиатор, омывает змеевик и охлаждается водой, циркулирующей по трубопроводу из насоса. Система охлаждения обеспечивает непрерывную работу двигателя при номинальном режиме и температуре окружающего воздуха ±35оС в течение 6 ч.

1

2

8

7

6

5

11

12

13

3

4

9

10



Рис. 8.15. Трансмиссия и система дополнительного охлаждения:

1, 2, 7, 8 – трубопроводы; 6 – краник; 3,4,5 - вентили; 9 – змеевик; 10 – корпус; 11 – пожарный насос; 12 – карданный вал; 13 – коробка отбора мощности

В отличие от АЦ пенобак размещен под полом АНР. В поперечном сечении он имеет форму сегмента (рис. 8.16). Пенобак изготовлен из нержавеющей стали. В задней части расположена горловина 4 для заполнения его пенообразователем. Она выведена на крышу кузова и имеет трубку 3 для выхода воздуха при заполнении бака. На переднюю стенку бакавыведен патрубок 2 для соединения с трубопроводом, ведущим к пеносме-сителю. В нижней части бака имеется отстойник 5 и заглушка 6. В зимнеевремя пенобак обогревается выхлопными газами.

Схема водопенных коммуникаций имеет ряд особенностей. Ее принципиальная схема показана на рис. 8.17. Так как насос размещен в средней части машины, то напорные задвижки 7 выведены на оба борта (см. рис. 8.14). Вакуумметр 10 установлен на щитке приборов у водителя автомобиля. Трубопровод 4 для забора пенообразователя из посторонней емкости выведен на левую сторону автомобиля (см. рис. 8.14). Всасывающий патрубок выведен вперед и расположен на переднем бампере. Это позволяет устанавливать автонасос на водоем без предварительного маневрирования.

Кузов автомобиля цельнометаллический, имеет восемь закрытых отсеков. В них расположено и закреплено пожарно-техническое оборудование.

Рис. 8.17. Водопенные коммуникации:

1 – насос; 2 – всасывающий патрубок;3 – пеносмеситель; 4 – трубопровод для подачи пенообразователя изпосторонней емкости; 5 – вентиль;6 – пенобак; 7 – напорная задвижка;8 – вакуумный кран;9 – мановакуумметр; 10 – вакуумметр

7

8

9

10

6

5

1

2

3

4

1

6

5

2

3

4

Рис. 8.16. Пенобак АНР-40(130)127:

1 – бак; 2 – штуцер забора ПО;3 – дыхательная трубка; 4 – заливная горловина; 5 – отстойник со сливной трубкой; 6 – заглушка



В средней части кузова установлены съемные стойки с роликами. Между стойками укладываются «змейкой» пожарные напорные рукава. При боевом развертывании рукава выкладываются на ходу в одну или две линии.

Для удобства укладки рукавов ящик изготовлен съемным, съемные также и боковые шторки в передних боковых отсеках кузова.

В задней части АНР на специальных кронштейнах установлена специальная катушка (поз. 6 на рис. 8.14), предназначенная для укладки, транспортировки и механизированной прокладки напорных рукавных линий. На шпульку катушки может быть намотано 100–120 м напорных рукавов диаметром соответственно 77 и 66 мм.

Рукавная катушка снимается и устанавливается на автомобиле вручную двумя бойцами. При прокладке рукавной линии катушка перекатывается на двух колесах с пневматическими шинами. Шпулька с рукавами вращается на двух радиально-сферических шариковых подшипниках и имеет фиксатор, препятствующий ее произвольному вращению.

На АНР полностью сохранено электрооборудование базового шасси. Кроме того, дополнительно установлены светопроблесковые маяки синего цвета, фары-прожекторы (боковая и задняя) для освещения места работы на пожаре. Для освещения кабины боевого расчета и отсеков кузовов установлены плафоны. На щитке приборов в кабине водителя установлены выключатели плафонов кузова, подсветки вакуум-клапана, фары прожектора, фары задней, электропроблесковых маяков. Автомобиль оборудован сигнализацией открывания дверей кузова.

1

2

3

4

5

6

7

Рис. 8.18. Пожарный автомобиль насосно-рукавный АНР-40(433112):

1 – шасси; 2 – двигатель; 3 – кабина водителя;4 – кабина боевого расчета; 5 – всасывающие рукава;6 – лестница; 7 – отсеки ПТВ

Разработаны и выпускаются промышленностью другие модели АНР на различных шасси. Один из этих автомобилей показан на рис. 8.18. Их отличают конструкции кузовов, использование штор для закрытия отсеков. Принципиальные схемы водопенных коммуникаций идентичны во всех типах АНР.

Все АНР укомплектованы воздушно-пенными стволами, стволами РС-70 и СРК-50, генераторами пены (ГПС-600) и комплектом ручных лестниц.

Достаточно высокие ходовые качества, большой запас напорных рукавов и необходимый запас ПТВ, а также возможность прокладывать рукавные линии на ходу машины позволяют успешно тушить пожары.

Тактико-технические характеристики современных АНР приводятся в табл. 8.1.

Таблица 8.1

Наименование показателя Раз-

мер-

ность Модель автомобиля

АНР-40

(130)127А АНР-40

(433360) АНР-40

(433112)

Шасси

Колесная формула

Мощность двигателя

Максимальная скорость

Число мест боевого расчета

Подача насоса

Количество рукавов диаметром:

51 мм66 мм77 ммПолная масса -

-

кВт

км/ч

чел.

л/с

м/шт.

м/шт.

м/шт.

кг ЗИЛ-43410

4х2,1

110

90

9

40

160/8

40/2

180/9

8200 ЗИЛ-433360

4х2,2

110

90

9

40

1080/54

-

200/14

11000 ЗИЛ-43312

4х2

110

80

10

40

-

-

1400/70

12500

8.3. Работа на пожарных автомобилях

Своевременное прибытие по вызову на пожар и включение в работу пожарных насосов, механизмов и агрегатов основных и специальных ПА зависит от многих факторов. Наиболее важные из них удельная мощность двигателя, техническое состояние ПА, дорожная обстановка на пути следования на пожар, наличие водоисточников и пути подъезда к ним. Большую роль играет и профессиональный уровень квалификации водителя и начальника караула.

В ГПС накоплен громадный опыт по вопросам определенной последовательности управления агрегатами и механизмами. Ее строгое выполнение также способствует более совершенному использованию пожарных машин.

На всех пожарных автомобилях производятся различные боевые действия. Рациональное их выполнение требует по прибытию на пожар правильной их установки. При этом должно быть исключено воздействие на пожарный автомобиль тепловых потоков. На автоцистернах и на насосно-рукавных автомобилях для выполнения боевых действий производится ряд работ: подача воды из цистерны, из открытого водоема, от водопроводной сети, перекачка воды на большие расстояния, подача воздушно-механической пены лафетными стволами, забор воды из открытых водоисточников при помощи гидроэлеватора.

Пожарные АЦ по прибытию к месту пожара устанавливают как можно ближе к очагу горения. Подача огнетушащих средств в стволы по решению руководителя тушения пожара осуществляется водой из цистерны и пенобаков, вывозимых на АЦ, или из других водоисточников. Подача воды и пены может производиться стационарным лафетным стволом или ручными стволами.

У АЦ, подготавливаемых к забору воды, должны быть плотно закрыты заглушки на всасывающих патрубках, все вентили или клапаны, сливные краники.

Насосно-рукавные автомобили устанавливаются на водоисточник – пожарный гидрант или открытый водоем.

Установка пожарного автомобиля на открытый водоем зависит от расположения в нем пожарного насоса. При среднем его расположении с выводом всасывающих патрубков в передней части автомобиля подъезд к водоисточнику осуществляется передним ходом. При расположении насоса в корме автомобиля – задним ходом. В обоих случаях необходимо выбирать удобное для подъезда место.

Большое значение для работы насоса имеет высота всасывания и условия прокладки всасывающих рукавов. Необходимо выбрать такое место, чтобы высота всасывания не превышала 7 м, а условия прокладки всасывающих рукавов исключали их резкие перегибы.

При постановке ПА на гидрант следует его устанавливать так, чтобы можно было свободно проложить напорно-всасывающий и напорные рукава.

При постановке ПА для работы следует поставить рычаг коробки передач в нейтральное положение; установить ПА с работающим двигателем на ручной тормоз; выключить сцепление и включить коробку отбора мощности.

Такая последовательность действий должна соблюдаться при эксплуатации ПА на базовых шасси ЗИЛ-130, ЗИЛ-131 и др.

На пожарных автомобилях с базовыми шасси ГАЗ-66 после включения коробки отбора мощности необходимо включить четвертую передачу коробки скоростей основной трансмиссии.

На ПА повышенной проходимости перед включением коробки отбора мощности рычаг раздаточной коробки необходимо поставить в нейтральное положение. При этом передний и задний мосты будут отключены от двигателя.

После включения коробки отбора мощности следует плавно включить сцепление. При этом крутящий момент от двигателя будет передаваться на вал насоса. Пожарные насосы не рекомендуется длительное время использовать без воды. Поэтому следует снизить частоту вращения вала двигателя до 800 – 1000 об/мин и быстро выключить сцепление рычагом в насосном отделении. Продолжительная работа выжимного подшипника сцепления в выключенном положении сцепления недопустима. Поэтому следует быстро заполнить водой пожарный насос и включить сцепление.

Заполнение насоса водой перед подачей ее в рукавную линию можно осуществлять различными способами. Для обеспечения заполнения насоса водой необходимо, чтобы заглушка на всасывающем трубопроводе была плотно завернута. Закрыты все вентили, клапаны и краники в водопенных коммуникациях.

Подача воды из цистерны. По прибытии ПА на пожар необходимо подать первый ствол. Это сокращает время боевого развертывания, позволяет быстро начать тушение пожара. Основная задача водителя при этом заключается в заполнении насоса водой и подаче ее в напорную линию со стволом.

Последовательность выполнения работ рассмотрим на примере фрагмента (рис. 8.19) водопенных коммуникаций.

Для подачи первого ствола необходимо:

присоединить рукавную линию 4 стволом к напорному патрубку с напорной задвижкой 3;

открыть вакуумный клапан 5 для выхода воздуха из центробежного насоса при его заполнении водой;

включить подсвет вакуумного клапана;

открыть вентиль 8 на трубопроводе, соединяющем цистерну 7 со всасывающим патрубком 1 насоса 2;

через смотровой глазок вакуумного клапана следить за заполнением насоса водой;

при появлении воды в вакуумном клапане закрыть его.

После заполнения насоса водой следует:

5

7

6

4

3

2

1

8

Рис. 8.19. Подача воды из цистерны:

1 – всасывающий патрубок; 2 – насос; 3 – напорная задвижка; 4 – рукавная линия; 5 – вакуумный клапан; 6 – клапан на коллекторе; 7 – цистерна, 8 – вентиль

включить сцепление рычагом из насосного отделения (при среднем расположении насоса – педалью сцепления, расположенной в кабине водителя);

создав насосом заданный напор, открыть задвижку 3 на напорном трубопроводе;

поддерживать требуемый напор изменением частоты вращения вала двигателя.

При заборе воды из цистерны на АЦ с насосами ПЦНН и ПЦНВ перед пуском насосов следует закрыть вакуумный кран, а вакуумный насос вручную отключить от пожарного насоса. При этом рукоятка дозатора должна находиться в положении «Закрыто».

Подача воды пожарным насосом из открытого водоема. Работа по подаче воды пожарными автоцистернами и насосно-рукавными автомобилями из открытых водоисточников производится в ряде случаев. Это имеет место в населенных пунктах со слабо развитой сетью водоснабжения, в сельской местности, а также в случаях, когда для тушения пожара требуется большое количество воды. Например, при тушении горящей нефти и нефтепродуктов в резервуарах или пожаров газовых и нефтяных фонтанов воду обычно подают из открытых естественных или искусственных водоемов.

Подготовка к подаче воды производится в следующей последовательности (рис. 8.20):

извлекают из пеналов всасывающие рукава, соединяют их друг с другом и подсоединяют всасывающую сетку;

снимают заглушку со всасывающего патрубка 1 и подсоединяют к нему всасывающие рукава 9 с сеткой;

1

2

4

3

5

9

Hs

300 мм

Рис. 8.20. Подача водыс открытого водоема:

1, 5 – см. рис. 8.19;9 – всасывающий рукав

опускают всасывающие рукава в водоем; при этом глубина всасывания Нs не должна превышать 7,5 м, а глубина погружения всасывающей сетки должна быть больше 300 мм;

открывают вакуумный клапан 5;

включают газоструйный вакуум-аппарат и плавно увеличивают частоту вращения вала двигателя;

при появлении в вакуумном клапане воды закрывают его и выключают газоструйный вакуумный аппарат;

включают сцепление и плавно увеличивают частоту вращения вала насоса;

создав требуемый напор, плавно открывают напорную задвижку 3, вода поступает в рукавную линию 4.

При наличии на АЦ дополнительной системы охлаждения необходимо в летнее время включать ее в работу, открыв оба краника на пожарном насосе.

При работе пожарных насосов с открытых водоемов возможны отказы в заборе воды. Основными их причинами являются: недостаточная частота вращения вала двигателя при включении газоструйного вакуумного аппа-рата; преждевременное, до закрытия вакуумного аппарата, снижение час-тоты вращения вала двигателя; большая частота вращения вала насоса иразвиваемый напор при открытии напорных задвижек.

При отказе в работе вакуумного аппарата заполнение пожарного насоса можно осуществить двумя разными способами: заливкой полостей пожарного насоса и всасывающих рукавов водой из цистерны и кольцеванием автоцистерны с пожарным насосом.

Первый способ обусловлен тем, что поступают так же, как при заборе воды из цистерны (см. рис. 8.19).

При втором способе необходимо соединить всасывающие и напорные рукава с насосом; включить сцепление; открыть полностью вентили в цистерну и из цистерны (поз. 6 и 8 на рис. 8.19), установить частоту вращения вала насоса, равную 2000 – 2500 об/мин, и, плавно закрывая вентиль из цистерны (поз. 8 на рис. 8.19), установить необходимое разрежение по вакуумметру.

После заполнения всасывающего рукава и пожарного насоса водой и отключения стрелки манометра закрыть вентили из цистерны и в цистерну и установить заданное давление на насосе.

Более простым является забор воды из открытых водоисточников насосами ПЦНН и ПЦНВ. После подсоединения к насосу всасывающих и напорных рукавов открыть вакуумный кран, вручную включить вакуумный насос, включить привод пожарного насоса, при этом одновременно автоматически включится вакуумная система. Установив частоту вращения вала насоса 2300 – 2600 об/мин, необходимо следить за показаниями мановакуумметра и манометра. При появлении избыточного давления в течение 30 – 40 с на выходе насоса более 0,39 МПа (40 м вод.ст.) вакуумный насос автоматически отключится. Регулируя частоту вращения вала двигателя, устанавливают необходимый напор на насосе.

Если при работе вакуумного насоса в течение 30 – 40 с и оборотах 2300 – 2600 об/мин не произойдет забора воды, то следует проверить:

закрыт ли вакуумный кран;

закрыты ли сливные краны на насосе;

надежность соединения всасывающих рукавов и глубину погружения всасывающей сетки;

наличие масла в масляном баке.

После проверок повторить забор воды.

При открытом вакуумном кране система забора воды автоматически сработает, если произойдет обрыв столба воды.

Рис. 8.21. Подача водыот водопроводной сети:

1-5 – см. рис. 8.19;9 – водосборник; 10 – напорный рукав; 11 – пожарная колонка;12 – гидрант; 13 – напорно-всасывающий рукав

5

3

4

2

1

9

10

13

12

11

Подача воды от водопроводной сети. Подача воды от водопроводной сети самый распространенный способ при тушении пожаров в городах, промышленных предприятиях и т.д. В этих случаях АЦ или НРА следует устанавливать всасывающими патрубками как можно ближе к колодцу гидранта водопроводной сети.

Для забора воды от водопроводной сети необходимо собрать напорно-всасывающую линию, как показано на рис. 8.21, затем следует:

открыть вакуумный клапан 5 для выпуска воды из насоса;

заполнить водой насос;

закрыть вакуумный клапан 5;

включить пожарный насос и, следя за режимом его работы, плавно открыть напорную задвижку 3, вода поступит в рукавную линию 4.

При подаче воды в насос ПЦНН-40/100 от водопроводной сети вакуумный кран должен быть закрытым. В противном случае полость вакуумного затвора, масляного бака и вакуумного насоса будут заполняться водой. При поступлении воды в насос воздух из него будет выдавливаться по рукавной напорной линии.

Подача воздушно-механической пены. Воздушно-механическая пена применяется для тушения легковоспламеняющихся жидкостей.

Подача пенообразователя из бака, а воды из цистерны. Рассмотрим последовательность выполнения работы по схеме рис. 8.22.

Рис. 8.22. Подача раствора пенообразователяв рукавную линию:

3, 4 и 8 – см. рис. 8.19; 9 – пеносмеситель;10 – трубопровод от коллектора насоса к пеносмеси-телю; 11 – тройник; 12 – кран; 13 – вентиль;14 – пенобак; 15 – лафетный ствол; 16 – вентиль

13

14

12

11

9

10

8

3

4

16

15

К напорному патрубку с задвижкой 3 подсоединяют рукавную линию 4 с ГПС, а затем следует:

открыть вакуумный кран или приоткрыть задвижку 3 для выхода воздуха из насоса;

открыть задвижку 8 на трубопроводе из цистерны в насос;

заполнить насос водой, включить его в работу и создать напор 70 –80 м.вод.ст.;

установить стрелку крана-дозатора пеносмесителя 9 на деление шкалы, соответствующее подаче присоединенных ГПС;

открыть пробковый кран на пеносмесителе 9 и кран 12 от пенобака 14 к пеносмесителю 9;

поддерживать режим работы таким, чтобы у ГПС напор был не менее 40 – 60 м вод.ст.

Подача пенообразователя из пенобака, а воды из водоема или водопроводной сети. В этом случае выполняются все операции по заполнению насоса водой из открытого водоисточника или водопровода.

При работе от пожарной колонки, установленной на гидрант водопровода, напор во всасывающем патрубке не должен превышать 25 м вод.ст. Регулирование его производят при работающем насосе и открытых задвижках 3, изменяя положения вентилей пожарной колонки.

Для подачи к ГПС выполняют операции, как было указано выше.

Подача пенообразователя к пеносмесителю от посторонней емкости. Запас пенообразователя в пенобаках невелик, поэтому при тушении пожаров возникает необходимость использовать бочки с пенообразователем.

Для подачи в систему пенообразователя необходимо снять колпачок со штуцера 11 и подсоединить к нему шланг. Второй его конец опускают в емкость с пенообразователем.

Для работы системы выполняются все операции, изложенные ранее.

Работа стационарным лафетным стволом. Подача воды или пены стационарным лафетным стволом 15 может производиться как при движении пожарного автомобиля, так и при установке его на боевой позиции. Управление лафетным стволом может осуществляться или вручную, или с помощью пневматического или гидравлического привода (при их наличии).

Подача воды или пены стационарным лафетным стволом на ходу производится на первой или второй передаче коробки скоростей основной трансмиссии.

Подготовка к подаче пенообразователя к лафетному стволу производится так же, как и его подача к ГПС. Для подвода пенообразователя к лафетному стволу необходимо открыть вентиль 12.

Промывка системы подачи пенообразователя. После тушения пожара пеной система подачи пены, насос, стволы и пеногенераторы необходимо промыть водой. Вода удалит остатки пенообразователя с поверхностей деталей системы, в противном случае будут корродировать металлические поверхности деталей. Кроме того, остатки пенообразователя в пеносмесителе будут кристаллизоваться, образуя отложения, которые могут приводить к отказу в его работе.

В случае, когда на АЦ имеется промывочный трубопровод от цистерны, необходимо открыть вентиль 13. При рабочем насосе вода из цистерны поступит к вентилю 13 (показано стрелкой), а затем в систему подачи пены, как и при подаче пенообразователя.

После подачи пены лафетным стволом промывка осуществляется при открытом вентиле 16, а при подаче к ГПС – при открытой напорной задвижке 3.

Особенности подачи пенообразователя насосом ПЦНН-40/100. При пенном тушении пожара подача водного раствора пенообразователя к пеногенераторам может производиться при ручном и автоматическом дозировании.

При ручном дозировании подача пенообразователя к насосу, а его водного раствора к пеногенераторам, производится так же, как было описано ранее.

Регулируя частоту вращения вала двигателя, устанавливают необходимый напор на выходе из насоса. При этом перепад давлений на эжекторе должен находиться в пределах от 0,49 МПа (50 м вод.ст.) до 0,98 МПа (100 м вод.ст.). Количество включаемых пеногенераторов и концентрация раствора пенообразователя устанавливаются на шкалах дозатора 3х и 6х.

При автоматическом дозировании подачи раствора пенообразователя выполняется ряд дополнительных операций.

Необходимо установить переключатель электронного блока в требуемое положение в зависимости от типа и концентрации раствора. Затем выполняются следующие операции:

переводится рукоятка крана эжектора в положение «Открыто»;

соответствующими органами управления водопенных коммуникаций (см. рис. 8.22) подают пенообразователь из пенобака в насос;

включают автоматическую систему дозирования (при этом загорается индикатор «АСД ПИТАНИЕ».

Регулируя частоту вращения вала двигателя, устанавливают требуемое давление на выходе из насоса.

Подача воды из водоема с помощью гидроэлеватора. Забор воды из открытых водоисточников с помощью гидроэлеватора происходит в трех случаях, когда:

уровень воды в водоеме ниже уровня насоса по вертикали более 7 м;

водоем удален от пожарного автомобиля по горизонтали на расстояние до 100 м;

толщина слоя воды в водоеме 5 – 10 см.

Кроме того, гидроэлеваторы используются для откачки воды из подвалов, из различных объектов на пожарах.

Забор воды автоцистерной из открытых водоисточников осуществляется при помощи одного или нескольких гидроэлеваторов, включаемых по различным схемам.

5

4

3

2

1

б

а



Рис. 8.23. Схема подачи воды гидроэлеватором:

1 – рукавная линия; 2 – цистерна; 3 – напорный рукав 77 мм; 4 – гидроэлеватор; 5 – напорный рукав 66 ммСхема, при которой в рукавную линию 1 подается небольшое количество воды, представлена на рис. 8.23. Для подачи воды необходимо:

выжав сцепление, включить коробку отбора мощности и отпустить педаль сцепления;

выключить сцепление рычагом из насосного отсека;

открыть напорную задвижку а на насосе (к гидроэлеватору), через нее выйдет воздух из насоса;

открыть задвижку б на трубопроводе из цистерны;

включить сцепление и увеличить частоту вращения вала насоса до 2000 об/мин;

в начале поступления воды из напорного рукава 3 в цистерну 2 открыть задвижку б на напорном коллекторе насоса (к стволу в рукавной линии 1);

установить напор на насосе в пределах 70 – 80 м.

При работе необходимо следить за уровнем воды в цистерне. Он регулируется задвижкой на напорном коллекторе насоса и частотой вращения вала насоса.

В случае, когда необходимо подавать воду через два ствола (расход до 10 л/с), к всасывающему патрубку насоса подсоединяют водосборник. На один его патрубок устанавливают заглушку, а шарнирным клапаном перекрывают патрубок, к которому будет присоединяться напорный рукав от гидроэлеватора.

Запуск насоса осуществляют, как указано выше, но вакуумный кран должен быть открыт для выхода воздуха. После запуска такой системы следует закрыть задвижку из цистерны и затем подать воду к стволам.

При подаче воды в количестве 20 – 30 л/с используются два гидроэлеватора, включенные параллельно (рис. 8.24). Включают гидроэлеваторы поочередно: сначала один, затем другой.

5

5

6

5

1

7

2

3

4



Рис. 8.24. Схема подачи воды двумя гидроэлеваторами:

1 – цистерна; 2 – водосборник; 3 – напорный рукав 77 мм; 4 – гидроэлеватор;5 – напорный рукав 66 мм; 6 –разветвления; 7 – рукавная линия

При уборке воды из помещений гидроэлеваторная система может работать от гидранта, рабочую и эжектируемую воду сливают в канализацию.

При эксплуатации гидроэлеваторных систем возможен срыв работы систем, уменьшение расхода эжектируемой воды. Наиболее распространенными причинами этого являются заломы рукавных линий, быстрое открытие задвижки подачи воды в рукавную линию, недостаточный напор на насосе. Возможно также засорение всасывающей сетки эжектора, превышение подаваемой воды на пожар над эжектируемым расходом.

Перекачка воды автоцистернами и насосно-рукавными автомобилями. В районах с большими расстояниями до водоисточников или при неисправных пожарных водопроводных системах возникает необходимость подавать воду по рукавным линиям. В этом случае потери напора в них могут превышать энергетические возможности двигателя и пожарного насоса АЦ или АНР. Поэтому возникает необходимость использовать АЦ или АНР как перекачивающие станции.

Перекачка воды может осуществляться двумя способами. По первому из них вода из насоса одной АЦ подается в насос второй, как показано на рис. 8.25, а. По второму способу каждая из последующих АЦ используется как промежуточная емкость, то есть вода подается в цистерну (рис. 8.25, б).

а

б



Рис. 8.25. Схема включения пожарных автомобилей по перекачке воды:

а – из насоса в насос; б – из насоса в цистерну

Первый способ является более сложным. При его применении необходимо согласовывать работу насосов обеих АЦ. Кроме того, требуется поддерживать избыточное давление (не менее 100 кПа) перед последующим насосом. Если эти условия не соблюдаются, то не исключается срыв работы системы.

Второй способ не требует какого-либо согласования режимов работы насосов. Контроль за работой системы осуществляется по уровню воды в цистерне, заполняемой водой. Этот способ и более экономичен, так как нет необходимости ограничивать давление перед цистерной. Поэтому расстояние между АЦ может быть большим, чем в первом случае.

В обоих методах перекачку воды можно осуществлять по двум параллельным рукавным линиям. В этом случае расстояние между АЦ может значительно увеличиваться, особенно при использовании первого способа.

После прокладки рукавных линий возможно большего диаметра по первому способу (для уменьшения гидравлических сопротивлений по их длине) включение в работу системы выполняют в следующей последовательности:

Включают пожарный насос АЦ у водоисточника и подают воду во второй насос, который должен быть подготовлен к работе, но сцепление выключено.

При поступлении воды ко второму пожарному насосу включают его сцеплением и плавно открывают задвижки напорных патрубков. Требуемый напор у насоса регулируется изменением частоты вращения вала пожарного насоса.

При перекачке воды по второму способу пожарный насос второго пожарного автомобиля включают после заполнения цистерны водой.

Уровень воды в цистерне регулируется увеличением подачи первого или уменьшением подачи второго насоса. Это осуществляется изменением частоты вращения валов пожарных насосов.

8.4. Анализ автоцистерн нового поколения

По параметрам тактико-технических характеристик пожарные машины идентичного назначения практически одинаковы во всем мире. Особенностями современного этапа развития пожарных машин является улучшение параметров их технических характеристик и значительное расширение их модификаций. Особенно показательным является создание более 65 модификаций автоцистерн к началу 2002 года.

Создавшееся положение имеет и достоинства и недостатки.

Достоинством является то, что есть возможность выбора АЦ с оптимальными параметрами для данных условий эксплуатации и природно-климатических условий. Недостаток обширной номенклатуры состоит в том, что комплектование АЦ пожарных частей создаст определенные трудности в освоении новых машин, организации их технического обслуживания и ремонта, обеспечении запасными деталями. Для решения возникающих задач необходимо проанализировать возможности АЦ, особенность их оборудования.

Общая характеристика АЦ. Современные АЦ создаются на шасси грузовых автомобилей ГАЗ, ЗИЛ, КамАЗ и «Урал». По вместимости цистерн они разделяются на легкие, средние и тяжелые.

Различие базовых шасси, вместимости цистерн для воды обусловили широкий спектр поступающих на рынок модификаций пожарных автоцистерн (табл. 8.1) по состоянию на 2002 г.

Таблица 8.1

Тип базовых шасси ГАЗ ЗИЛ КамАЗ «Урал» Количество

шт. %

Легкие 1 6 - - 7 10,7

Средние - 22 4 4 30 46,2

Тяжелые - 1 15 12 28 43,1

Σ 1 29 19 16 65 100

% 1,5 44,6 29,2 24,6 100 Кроме того, на ряде предприятий по индивидуальному заказу возможно изготовлять одну и ту же АЦ на различных шасси. Таким образом, потребителю представляется более 65 модификаций АЦ только по базовому шасси. Это создает предпосылки для рационального комплектования АЦ подразделений ГПС.

Все грузовые автомобили имеют полноприводные и неполноприводные шасси. По этому признаку значительно различаются автоцистерны (табл. 8.2).

Таблица 8.2

Тип АЦ Полноприводные Неполноприводные

Колесная

формула Количество Колесная формула Количество

шт. % шт. %

Легкие 4х4.1 2 5,2 4х2,2 5 18,5

Средние 6х6.1

4х4.1 16

2 47,4 4х2,2 12 44,4

Тяжелые 6х6.1 18 47,4 6х4,2

4х2,2 8

2 37,1

Σ - 38 - - 27 -

% - - 100 - - 100

Привод на шасси характеризует проходимость АЦ по дорогам различного назначения. Из табл. 8.2 следует, что 20 % АЦ тяжелого типа и более 35 % АЦ среднего типа сооружены на неполноприводных шасси. Следовательно, имея значительные мощности, их возможности ограничены при преодолении дорожных препятствий, что всегда сказывается на времени следования по вызову на пожар.

Важным показателем технических возможностей АЦ является их удельная мощность, т.е. отношение мощности двигателя к ее полной массе – кВт/т (табл. 8.3). В таблице представлены данные по 41 автоцистерне.

Таблица 8.3

Тип АЦ Удельная мощность

до 10 кВт/т более 10 до 11 кВт/т более 11 кВт/т

единиц % единиц % единиц %

Легкие 1 20 - - 4 80

Средние 5 22,7 8 36,3 9 41

Тяжелые 9 65 4 28,0 1 7

Итого 15 35 12 30 14 35

В соответствии с требованиями НПБ 163-97 АЦ должны иметь удельную мощность не менее 11 кВт/т. Из приведенной таблицы следует, что только 35 % АЦ удовлетворяет этому требованию. При этом практически все АЦ тяжелого типа и 65 % АЦ среднего типа не удовлетворяют требованиям НПБ 163-97. Это одна из причин, не позволяющих развивать высокие скорости следования на пожар.

Одним из важных параметров тактико-технических возможностей является численность боевого расчета на АЦ. До настоящего времени не имеется достаточно обоснованных рекомендаций по ее определению. По-видимому, минимальную численность можно устанавливать, исходя из требований ГДЗС, чтобы на АЦ было звено газодымозащитников, состоящее из трех человек. Таким образом, минимальная численность должна составлять пять человек, считая водителя АЦ и начальника караула. К настоящему времени она изменяется в пределах от 2 до 7 человек (табл. 8.4).

Таблица 8.4

Тип АЦ Численность боевого расчета, человек Количество ПА

7 6 3 2 Σ %

Легкая 5 - 1 1 7 10,7

Средняя 12 13 5 - 30 46,2

Тяжелая 15 8 5 - 28 43,1

Σ 32 21 11 1 65 100

% 49,3 32,3 16,9 1,5 100 -

Из табл. 8.4 следует, что 50 % всех типов автоцистерн имеют боевые расчеты по 7 человек. В то же время 12 % АЦ имеют боевые расчеты крайне ограниченные по численности, что не всегда может обеспечивать нормальное функционирование звеньев ГДЗС.

Особенностью современных АЦ является то, что на них не имеется пневмогидравлического управления арматурой водопенных коммуникаций. Все управление осуществляется только вручную.

Пожарные насосы. На пожарных автомобилях и АЦ применялся унифицированный центробежный насос ПН-40УВ и его аналоги. Эти насосы надежны в эксплуатации, они полностью обеспечивают подачу воды или растворов пенообразователя при тушении пожаров на различных объектах.

Разработка пожарных насосов нового поколения оказала влияние на расширение тактических возможностей АЦ. Вследствие этого стало возможным осуществлять переход от тушения насосами нормального давления к тушению посредством подачи воды или пены при высоком давлении. Кроме того, созданы АЦ с насосами, работающими только от водопроводной сети.

По заказу потребителя на некоторых заводах может быть установлен любой из насосов прежнего или нового поколения. Некоторые заводы практикуют установку на пожарных автомобилях насосов иностранных фирм, например Розенбауэр или Циглер.

Значительно облегчился труд оператора. Однако это потребовало значительного усложнения конструкции систем насоса и сопряженного с ним повышения квалификации пожарных при эксплуатации ПА.

Автоцистерны с дополнительным оборудованием. Опыт тушения пожаров автоцистернами показал, что иногда традиционного пожарно-технического вооружения на них недостаточно для эффективного выполнения работ. Так, в ряде случаев при слабом освещении приходится эвакуировать различные объекты для подачи воды в очаги горения. Поэтому появилась необходимость оснащать АЦ дополнительным оборудованием. Кроме того, выпускаются АЦ легкого типа с насосами высокого давления и номинальными подачами при напорах Н = 80 м. Образцы таких автоцистерн приводятся в табл. 8.5.

Таблица 8.5

Предприятие,

шасси Обозначение

цистерны Пожарный

насос Дополнительное оборудование

ОАО «Пож-техника»

ЗИЛ АЦ-1,3-20(5301) ПН-20 или

ПЦНВ-4/400 –

АЦ-2-4(5301) ПЦНВ-4/400 или

ПН-20 АЦ-0,8-4(5301) ПЦНВ 4/400 или

ПН-20 Генератор 4 кВт, мачта 4 м, прожекторы стационарные 2, переносные 2 мощностью по 7 кВт

КамАЗ АЦЛ-3-40-17 (4925) ПН-40УВ

или

ПЦНН-40/100-4/400 Лестница 17 м, рабочий вылет 15,0 м, нагрузка на вершину 160 кгАЦЛ-4-40-22(4332)* Лестница 22 м, рабочий вылет19,0 м, нагрузка на вершину 160 кг* По желанию заказчика могут использоваться другие шасси.

Насосы ПН-20 подают воду 20 л/с при напоре 80 м. Автоцистерны с насосами ПЦНВ-4/100 могут подавать воду только из собственной цистерны или от гидранта.

Автоцистерны с лестницами. Разработаны две модификации АЦ с лестницами с высотой подъема 17 и 20 м – АЦ-3-40-17 и АЦ-3-40-20. Таким образом, эти АЦ могут использоваться в городах и районах с застройкой домов 5–6 этажей.

Автоцистерны пожарные с лестницей на двухосном шасси КамАЗ-4925 или КамАЗ-4932 предназначены для:

доставки к месту пожара боевого расчета, запаса воды и пенообразователя, ПТВ;

тушения пожара огнетушащими средствами с помощью ручных стволов и проведения спасательных работ на высоте до 17 или 20 м.

Так как автоцистерны с лестницей предназначены, главным образом, для тушения пожаров в городах, то их создают на неполноприводных шасси 4х2. Параметры их технических характеристик приведены в табл. 8.6.

Таблица 8.6

Показатели технической характеристики Размерность АЦ-3-40-17

АЦ-3-40-20

Тип шасси

Численность боевого расчета

Вместимость цистерны

Вместимость пенобака

Пожарный насос

Масса полная

Габаритные размеры -

-

человек

м3

м3

-

кг

мм КамАЗ-4925

ЗИЛ-4332

3

3

0,3

ПН-40УВ или

ПЦНН-40/100

15200

13000

7,7х2,5х3,0

9,1х2,5х3,1

Примечание. Параметры, приведенные во вторых строках, относятся к АЦ-3-40-20.

Обе автолестницы идентичны по конструкции. Кроме того, АЦ-3-40-17 аналогична по конструкции АЦ-5-40(4925) и отличается от нее наличием автолестницы.

Общий вид АЦ-3-40-17 представлен на рис. 8.26. Между кабиной шасси 1 и кузовом АЦ 7 размещена платформа 4, на которой установлена рама поворотная 2. На ней закреплена подъемная рама 3, на которой монтируются четыре колена лестницы 6.

1

2

3

4

5

6

7

8

9

10

11

12

10



Рис. 8.26. Общий вид АЦЛ-3-40-17 (4925):

1 – кабина боевого расчета; 2 – рама поворотная; 3 – подъемная рама; 4 – платформа; 5 – гидроцилиндр подъема; 6 – комплект колен; 7 – кузов; 8 – отсек ПТВ;9 – насосный отсек; 10 – основания опорные; 11 – силовая группа;12 – отсек управления (правый передний)

Поворот рамы поворотной 2 осуществляется с помощью гидромеханической передачи, включающей, как на всех автолестницах, червячную и цилиндрическую передачу с внутренним зацеплением. Приводом поворота служит аксиально-поршневой насос, мощность к которому подводится от коробки отбора мощности.

Подъем колен лестницы на требуемый угол наклона производится с помощью гидравлического цилиндра подъема 5.

Устойчивость автоцистерны с автолестницей обеспечивается дополнительными опорами 10. Их выдвижение осуществляется гидроцилиндрами выдвигания опор.

Эти системы и механизмы по конструкции и принципам работы аналогичны таким же механизмам на автомобильных лестницах, выпускаемых нашими заводами.

Выдвигание и сдвигание колен лестницы осуществляется с помощью полиспастов.

Основные параметры технической характеристики лестницы цистерны АЦ-3-40-17 представлены в табл. 8.7.

Таблица 8.7

Наименование показателя Размер-

ность Значение

Максимальная высота подъема

Рабочий вылет вершины лестницы

Максимальный угол подъема

Максимальная нагрузка на вершину неприслоненной лестницы

Максимальная распределенная нагрузка на вершину прислоненной лестницы

Угол поворота лестницы (вправо и влево) при углах подъема от 5 до 75о (не менее)

Время маневров лестницы с рабочей нагрузкой:

подъем от 0 до 75о

опускание от 75 до 0о

выдвигание на высоту 17 м при угле подъема 75о

сдвигание

установка выносных опор м

м

град.

кг

кг

град.

с

с

с

с

с 17

15

75

160

400

210

45

40

45

40

40±5

Примечание. Время работы указано при работе на 4-й передаче коробки скоростей и частоте вращения коленчатого вала двигателя 1200 об/мин.

Управление лестницей АЦЛ и ее использование характеризуется рядом особенностей.

Опускание опор до упора тарелок в грунт включается тумблером на релейном шкафу в отсеке управления. Сначала опускают передние, а затем задние опоры. Боковой наклон лестницы допускается выравнивать опорами. Подъем опор производят в обратной последовательности только после укладки лестницы на опорную стойку.

Все остальные маневры лестницы осуществляют с выносного пульта.

На выносном пульте находятся:

ручки поворота, подъема и опускания, выдвигания и сдвигания колен лестницы;

кнопки пуска и остановки двигателя, управления лафетным стволом;

ряд специальных индикаторов, характеризующих правильность установки и работы основных элементов лестницы (совмещение ступеней колен, надежность опор, упор вершины и др.).

При подаче лестницы угол наклона площадки, на которой она установлена, должен учитываться так, чтобы угол ее наклона не превышал 75о.

Поворот лестницы разрешается производить только после подъема комплекта колен на угол 10о.

Вершину лестницы, которая опирается на край крыши (карниза, окна), необходимо выдвигать выше точки опоры на 0,1 – 1,5 м.

При скорости ветра более 10 м/с при выдвигании лестницы должны применяться растяжные веревки. Люди, удерживающие веревки, должны стоять по обе стороны лестницы на расстоянии 12 – 15 м.

Исходя из условий безопасности, на неприслоненной лестнице возможно перемещение только одного человека. На прислоненной лестнице одновременно разрешается находиться восьми человекам, при условии нахождения на каждом колене по два человека. Разрешается перемещение одновременно трех человек на одном из первых трех колен лестницы.

Используя лестницу, возможно подавать огнетушащие вещества лафетным стволом, закрепленным на вершине первого колена. При этом на лестницу действуют дополнительные усилия. Поэтому лафетный ствол должен надежно закрепляться; рукава, прокладываемые посередине лестницы, необходимо прикреплять к ступеням рукавными задержками. При подаче воды следует избегать резких изменений режима работы насоса. Управление пожарным насосом можно вести со щитка приборов или щитка управления в отсеке пожарного насоса.

8.5. Автомобили первой помощи пожарные (АПП)

Сокращение времени следования АЦ по вызову – один из факторов уменьшения продолжительности свободного развития пожара и снижения ущерба от него. Важно также и то, что сокращение этого времени всегда приводит к уменьшению гибели людей на пожарах. Так, было установлено, что в течение только одной сокращенной минуты прибытия на пожар спасается в среднем 2 человека на 100 пожарах.

Время следования к месту вызова занимает до 20 % от всего времени занятости АЦ и должно быть минимальным. Важным в этих обстоятельствах является учет дорожных условий эксплуатации ПА.

В настоящее время основные ПА общего применения создаются на шасси грузовых автомобилей ЗИЛ, «Урал», КамАЗ и др. Они все имеют большие габариты и массу. Это ограничивает возможности АЦ в ряде современных городских условий реализовать свои динамические характеристики. Поэтому в последние годы стали использовать грузовые автомобили малой грузоподъемности для создания пожарных автомобилей первой помощи (АПП). Эффективность их обусловлена тем, что в городских условиях они могут прибывать на пожары значительно быстрее, чем АЦ на шасси большой грузоподъемности. Кроме того, они более экономичны по эксплуатационным расходам.

Для эффективного использования АПП должны удовлетворять ряду требований. При грузоподъемности шасси до 1,5 т масса ПТВ должна быть не менее 800 кг. Полная масса АПП при этом составит 2,5 – 3,5 т, а необходимый внутренний объем кузова для размещения оборудования должен быть не менее 3,5 м3. При мощности двигателей шасси порядка 65 кВт удельная мощность может достигать значений 18–25 кВт/т. Общий вид АПП представлен на рис. 8.27.

1

2

3

4



Рис. 8.27. Автомобиль быстрого реагирования:

1 – шасси ГАЗ 2705; 2 – кабина боевого расчета; 3 – размещение пенобака и мотопомпы; 4 – кассета (решетка для ПТВ)

Пожарные автомобили обычно реализуют 70 – 80 % максимальной скорости. Появляются магистрали с ограничением скорости до 80 км/ч, поэтому скорость базового шасси АПП должна быть не менее 100 – 120 км/ч.

Боевой расчет на АПП должен быть не менее четырех человек. Исходя из изложенных выше требований, на АПП должны находиться: запас огнетушащих веществ в пределах 300 – 500 кг, пожарные рукава не менее 100 м, насос с подачей до 4 л/с, а ПТВ массой 60 – 100 кг.

Результаты испытаний АЦ-40(130)63А и анализа испытаний АПП на шасси УАЗ-452 выявили ряд достоинств автомобиля первой помощи.

Прежде всего, оказалось, что превышение средней скорости следования на пожар АПП составляет около 40 % по сравнению с такой же скоростью АЦ-40(130)63А (рис. 8.28, а) и никогда не превышает критического значения 120 км/ч.

Pv

1

2

v,

j



jc

4

3

2

1

б

а

Pj



Рис. 8.28. Скорости (а) и поперечное ускорение центра масс (б):

1 – АЦ-40 (130) 63Б; 2 – АПП; 3 – скольжение; 4 – отрыв колес(3 и 4 для АЦ-40(130) и АПП, соответственно)

При следовании на пожар в экстренном режиме возрастает вероятность аварийных ситуаций из-за увеличения числа случаев отрыва колес от поверхности дороги и бокового скольжения при маневрах автомобиля. И по этому показателю АПП оказался лучшим. Это следует из графика, показанного на рис. 8.28, б. Поперечные ускорения центра масс АПП и АЦ-40(130)63А (кривые 1–2) достаточно существенно различаются. Предельные значения ускорений, при которых начинается скольжение колес jc (занос) и отрыв колес jo (соответственно граничные прямые 3 и 4), позволяют утверждать, что у АПП вероятность отрыва колес от полотна дороги в 2 – 3 раза, а вероятность заноса в 1,5 – 2 раза меньше при действии поперечных сил инерции. Для крена кузова вероятность превышения критического значения меньше в 1,5 – 1,8 раза. Вероятность появления аварийной ситуации при торможении также уменьшается в 2 – 2,5 раза.

На всех городских маршрутах увеличение средней скорости следования на пожар достигается за счет увеличения частоты и времени использования высших передач и уменьшения числа переключения передач.

На эффективность применения АПП большое влияние оказывает протяженность маршрута следования на пожар. По их протяженности можно выделить три интервала. Это маршруты протяженностью до 2 км – здесь нет явного преимущества АПП по времени прибытия. Маршруты от 2 до 6 км – на них АПП имеет стабильное преимущество по сравнению с АЦ-40(130)63А. На маршрутах, протяженность которых более 6 км, преимущества АПП незначительны.

Эффективность применения АПП целесообразно осуществлять на основании анализа условий их эксплуатации и технических характеристик.

Частоту и продолжительность работы основных ПА можно характеризовать одним комплексным показателем, который и будет характеризовать условия эксплуатации:

(8.1)

где ω – занятость ПА на Ν вызовах за время эксплуатации Т; τк – занятость АПП при обслуживании к-го вызова, ч; Т – продолжительность эксплуатации, ч.

Значение ω находится в пределах 0 ω 1, при среднем значении 0,02 – 0,025 и максимальном значении, равном ω = 0,05, что соответствует 5 % занятости ПА на обслуживание поступающих вызовов.

Оценивая эффективность пожарной техники, исходят из того, что ее совершенствование должно уменьшать ущерб от пожара. Оценить эффективность можно сопоставляя затраты на новую технику с получаемым от нее эффектом – сокращением ущерба. Обозначим его П, а затраты на приобретение АПП и его эксплуатацию С (ω, Т), тогда удельная стоимость использования АПП будет равна

(8.2)

1/СЕ

2

1

ω

Рис. 8.29. Критерии эффективности:

1 – АЦ-40 (130) 63Б; 2 – АПП

В экономических расчетах принимают величину, обратную СЕ (ω, Т), тогда зависимость 1/СЕ (ω, Т) от ω можно выразить графически, как показано на рис. 8.29.

Из этого графика следует, что замена одной автоцистерны на АПП экономически выгодна при условии, что число выездов на пожары в жилой сектор за год составит более70 %, т.е. относительное время занятости ω отдельной пожарной частиω 0,01. Если маршруты следования имеют протяженность от 2 до 6 км, то на 25 – 40 % уменьшится продолжительность следования по вызову и на 15 – 20 % уменьшатся эксплуатационные расходы, главным образом на топливо.

Современные АПП создаются на грузовых автомобилях малой грузоподъемности. Так как они предназначены для использования в городах, то для них используются неполноприводные шасси в основном с карбюраторными двигателями. По параметрам основных показателей они мало различаются. Так, у них очень близкие значения мощности двигателей. Они мало отличаются друг от друга по запасу вывозимой воды и пенообразователя. Они имеют большие значения удельной мощности (до 20 – 25 кВт/т) и, следовательно, могут развивать высокие скорости движения, достигающие 100 – 115 км/ч. Однако они очень сильно различаются оснащением ПТВ, компоновками, численностью боевых расчетов. Некоторые параметры АПП указаны в табл. 8.8.

Таблица 8.8

Показатели Размер-

ность АПП-4/400

(3302) АБР-3

(2705) АБР-4

(3778) АПП-4

(2705)

Марка шасси - ГАЗ-3302 ГАЗ-2705 БАЗ-3778 ГАЗ-2705

Колесная формула - 4×2,2 4х2,2 4х2,1 4х2,2

Число мест боевого расчета человек 3 3(5) 4 4

Вместимость цистерны м3 0,5(не менее) 0,5 0,35 (не менее) 0,5

Вместимость пенобака м3 0,03(не менее) - 0,02 (не менее) -

Марканасоса - НЦПВ 4/400 Мотопомпа

МП-13 ИНР-250 ПН-20

Подачанасоса л/с 4 - 0,4 2,0–4,0

Полная масса кг 2500 3500 3800 3500

Удельная мощность кВт/т 18,8 18,8 19,3 18,8

Габаритные размеры мм 5,5х2,1х2,2 5,5х2х2,45 5,163х2,090х2,6 5,5х2х2,45

Скорость км/ч 115 85 110 110

Из этой таблицы следует, что АПП оборудуются различными насосами. На них могут быть огнетушители. Так, на АБР-3 установлены два огнетушителя ОП-10 и два ОУ-5. На этом же автомобиле имеется генератор мощностью 2 кВт. Все АПП укомплектовываются пожарным оборудованием, средствами СИЗОД, а также инструментами для проведения различных спасательных работ. На АПП-0,3-2 (3302) и АПП-0,3-2 (33023) насосы могут забирать воду только от водопроводной сети, но на них предусмотрены выносные мотопомпы с подачей 2 л/с воды при напоре 400 м. Кроме того, предусматривается их укомплектование гидравлическими инструментами: ножницами, комбинированным ручным насосом, расширителем дверным. На этих же автомобилях устанавливаются переносные электроагрегаты мощностью 6 кВт. На них имеются бензорезы дисковые и электрическая дисковая пила. Таким образом, эти АПП могут использоваться не только для тушения загораний и пожаров, но и для выполнения аварийно-спасательных работ.

8.6. Мотопомпы

Мотопомпы – это транспортируемые средства, предназначенные для подачи воды из водоисточника к месту тушения пожара. Они представляют собой автономный агрегат, состоящий из центробежного насоса и двигателя внутреннего сгорания. Автономность, сравнительно небольшая масса делают их незаменимыми в пожарной охране сельской местности, организации подачи воды из труднодоступных для АЦ мест.

Имеются различные модификации мотопомп: для работы на морской воде, для перекачки различных жидкостей. Они могут использоваться и для пожаротушения.

Мотопомпы могут устанавливаться на автоцистернах и пожарных автомобилях первой помощи, что позволяет, при отсутствии удобного подъезда к водоисточнику, установить на нем мотопомпу и организовать работу по перекачке воды.

По тактическому назначению и способу транспортировки мотопомпы делятся на два типа: переносные и прицепные.

Мотопомпы переносные монтируют на легких рамах. К месту пожара их доставляют транспортными средствами или подносят к водоисточнику вручную.

Мотопомпы прицепные оборудуют на одноосных прицепах. Их буксирует любой автомобиль с буксирным устройством.

Мотопомпа прицепная МП-1600 (рис. 8.30). Ее монтируют на одноосном прицепе. Она состоит из двигателя внутреннего сгорания и центробежного насоса.

Двигатель четырехцилиндровый карбюраторный тип ЗМЗ-24-01. При частоте вращения коленчатого вала n = 4500 об/мин он развивает мощность 62,5 кВт. Это двигатель автомобиля, а так как на мотопомпе он эксплуатируется в стационарном режиме, то для охлаждения он оборудован теплообменником. Вода, поступающая в теплообменник из центробежного насоса, предотвращает перегрев двигателя. Теплообменник установлен на головке блока цилиндров вместо верхнего патрубка.

2

3

4

5

6

1

Рис. 8.30. Мотопомпа МП-1600:

1 – шасси; 2 – ГПС; 3 –защитный кожух;4 – всасывающий рукав; 5 – напорныйпатрубок; 6 – люк

Мотопомпа оборудована автоматической системой прекращения работы двигателя при отрыве столба воды во всасывающей линии.

На мотопомпе установлен центробежный, одноступенчатый с двумя спиральными коллекторами насос консольного типа. Он жестко присоединен к картеру муфты сцепления двигателя. Характеристика насоса представлена на рис. 8.31. При частоте вращения вала насосаn = 2700 об/мин он расходует Q = 1600 л/мин воды, развивая напорН = 90 м. При этом потребляемая мощность насоса равна 40,5 кВт.

При полной подаче топлива

0

Рис. 8.31. Гидравлическая характеристика насосамотопомпы МП-1600

Н

Q



Система водопенных коммуникаций простая (рис. 8.32). Она обеспечивает забор воды из естественных и искусственных водоисточников с глубины до 7 м. В системе имеется пеносмеситель 2 со штуцером. К этому штуцеру подсоединяется емкость с пенообразователем. При помощи пеногенератора ГПС-600, подсоединяемого к патрубку коллектора 4, при открытой шаровой задвижке 3 возможно тушение пожара пеной.

3

4

6

5

1

2

8

9

7

Рис. 8.32. Водопенные коммуникации:

1 – всасывающий рукав; 2 – пеносмеситель;3 – малогабаритные шаровые задвижки;4 – коллектор насоса; 5 – насос; 6 – трубопровод, соединяющий коллектор насоса с гидрокамерой;7 – газоструйный вакуумный аппарат;8 – гидрокамера; 9 – вакуумный клапан

Вакуумная система мотопомпы включает вакуумный клапан 9, гидрокамеру 8 и газоструйный вакуумный аппарат 7, включенный в систему выпуска отработавших газов двигателя.

а

б

10

9

8

7

6

5

4

3

2

1

11

в

Рис. 8.33. Гидрокамерас вакуумным клапаном:

1 – корпус; 2 – резиноваядиафрагма; 3 – шток с тарелкой;4 – крышка; 5 – вилка; 6 – рычаг;7 – вал с эксцентриком; 8 – тарелка клапана; 9 –пружина; 10 – штуцер; 11 – корпус вакуумного клапана;

а – из всасывающей полости насоса; б – к газоструйному аппарату;в – от коллектора насоса

Вакуумный клапан 9 может включаться и выключаться вручную, однако предусмотрено и гидравлическое управление им. По окончании забора воды она под давлением поступает по трубопроводу 6 в гидрокамеру 8, с помощью которой выключается вакуумный кран.

В вакуумной системе насоса, как указывалось, имеется вакуумный клапан и гидрокамера, смонтированные в одном узле. Гидрокамера служит для закрывания вакуум-клапана после забора воды и, следовательно, для выключения газоструйного вакуум-аппарата.

В исходном положении резиновая диафрагма 2 гидрокамеры занимает положение, указанное на рис. 8.33. При этом вал 7 своим эксцентриком переместит клапан 8 в верхнее положение и сожмет пружину 9. При этом всасывающая полость насоса (стрелка а) через корпус 11 вакуумного клапана соединится (стрелка б) с газоструйным вакуумным аппаратом.

При включении насоса в работу газоструйный вакуумный аппарат создаст разрежение в нем и в вакуумной системе. Насос заполняется водой и она под давлением из коллектора насоса поступит под диафрагму гидрокамеры (стрелка в). Диафрагма начнет деформироваться и произойдет поворот вала 7. Под действием пружины 9 клапан 8 перекроет магистраль а и б.

При обрыве столба воды во всасывающей магистрали уменьшится давление в насосе. В гидрокамере диафрагма 2 будет перемещаться вниз и валы 7 своим эксцентриком соединят полости в направлении стрелок а и б. В работу включится газоструйный вакуумный аппарат и произойдетзабор воды.

В насосном отделении на щите расположены следующие приборы управления мотопомпой:

рукоятка выключения вакуум-аппарата на правой стороне рамы мотопомпы (для выключения вакуум-аппарата рукоятку перемещают на себя и устанавливают фиксатор);

рукоятка выключения сцепления на левой стороне рамы (при выключении рукоятку перемещают на себя и устанавливают на фиксатор);

рукоятка управления жалюзи на щите приборов в левой части насосного отделения (при перемещении рукоятки на себя жалюзи закрываются);

кнопка газа на щите приборов (для открывания дроссельной заслонки кнопку следует подать на себя);

кнопка управления воздушной заслонкой карбюратора на щите приборов (для закрывания воздушной заслонки кнопку перемещают на себя);

мановакуумметры и другие приборы на щите приборов.

Глава 9

ОСНОВНЫЕ ПА ЦЕЛЕВОГО ПРИМЕНЕНИЯ

Основные ПА целевого применения доставляют в районы вызова личный состав и пожарно-техническое вооружение. Все они имеют определенное назначение для тушения пожаров на объектах различного назначения (самолеты, газовые и нефтяные фонтаны, музеи, театры и т.д.).

В качестве огнетушащих веществ на этих ПА применяют: воду, пену, порошки огнетушащие, нейтральные газы и т.д.

9.1. Пожарные насосные станции

Пожарные насосные станции (ПНС) предназначены для подачи воды по магистральным рукавным линиям:

к передвижным лафетным стволам;

к пожарным автомобилям;

к месту крупного пожара для создания резервного запаса воды.

ПНС монтируются на шасси высокой проходимости, что позволяет ей оперативно изменять место установки и быстро начинать работу.

Такие станции обеспечивают работу трех-четырех автоцистерн с подачей их насосами 30 – 40 л/с воды. Они перекачивают воду на расстояние до 2 км.

При использовании сборно-разборных металлических трубопроводов подача воды может быть увеличена на большие расстояния.

При тушении крупных пожаров ПНС применяется совместно с рукавными автомобилями АР-2, автомобилями водопенного тушения АВ-20 или АВ-40, пожарными автоцистернами. Они эффективно используются при тушении крупных пожаров лесных массивов, торфяников, больших складов. При тушении газовых и нефтяных фонтанов они обеспечивают работу автомобилей газоводяного тушения (АГВТ).

Современные ПНС создаются на шасси ЗИЛ-131, КамАЗ-43114, Урал-5557. С колесной формулой 6х6 полная масса ПНС достигает 11000 (ЗИЛ-131); 12500 (КамАЗ – 43114) кг.

На ПНС имеются два двигателя: двигатель шасси и двигатель привода насоса. Следовательно, в отличие от автоцистерн, на которых двигатели работают в двух режимах – транспортном и стационарном, на ПНС двигатель шасси эксплуатируется только в транспортном режиме и ненагруженном стационарном (при ЕТО), а двигатель насоса – только в стационарном режиме.

Наличие на ПНС двух двигателей предопределило особенности их компоновки (рис. 9.1). Двигатель автомобиля ЗИЛ-131 размещен перед кабиной, а в кузове ПНС установлен автономный дизель 1, который с муфтой сцепления и карданным валом соединен с насосом 6.

В качестве источника энергии для привода пожарного насоса используются четырехтактные двенадцатицилиндровые дизели 2Д12Б. На новых ПНС устанавливают модернизированный дизель 2Д12Бс. Эти дизели развивают мощность 220 кВт при частоте вращения 2100 об/мин. На ПНС они эксплуатируются в стационарном режиме, поэтому дизель, кроме собственной системы охлаждения, оборудован дополнительным теплообменником, включенным в пожарный насос. Вода, поступающая в теплообменник из пожарного насоса, дополнительно охлаждает воду системы охлаждения двигателя. Дополнительно охлаждается масло в маслобаке.

Дизели характеризуются большими значениями степеней сжатия. Поэтому для их пуска применяются мощные стартеры, получающие питание от аккумуляторных батарей 6-СТЭ-128 емкостью 256 ампер-часов. Кроме того, они оборудованы аварийной системой воздухопуска сжатым воздухом, содержащимся в двух баллонах при давлении 15 МПа.

а

б

10

9

8

7

2

6

1

3

4

5

Органы управления и контроля на пульте



Рис. 9.1. Компоновка и структурная схема ПНС-110:

а – компоновка ПНС-110:

1 – двигатель 2Д-12Б; 2, 9 – топливный бак; 3 – баллоны со сжатым воздухом;4 – боковые отсеки; 5 –муфта сцепления; 6 – центробежный насос ПН-110; 7 – органыуправления и контроля на пульте; 8 – карданный вал; 10 – масляный бак;

б – структурная схема агрегатов и систем ПНС-110

Для обеспечения надежного пуска двигателя при низких температурах он оборудован специальным пусковым подогревателем, обеспечивающим разогрев воды в системе охлаждения и масла в маслобаке.

На ПНС установлены пожарные насосы ПН-110Б. Они геометрически подобны универсальным насосам ПН-40УВ и отличаются от них только размерами и массой. На насосе имеется всасывающий патрубок диаметром 200 мм и два напорных патрубка диаметром по 100 мм.

Насос ПН-110 обеспечивает подачу воды в количестве 110 л/с, развивая напор 100 м. Эти значения величин подачи и напора получают при глубине всасывания 3,5 м и частоте вращения вала насоса 1350 об/мин (рис. 9.2).

n=1300 об/мин

n=1400 об/мин

H, м

Q, л/с



Рис. 9.2. Гидравлическая характеристика ПН-110

Максимальная высота всасывания насоса 7 м. Насосная установка состоит из насоса, системы всасывающих и напорных трубопроводов, заборной арматуры и измерительных приборов: вакуумметра, манометра, тахометра.

Насос имеет пеносмеситель с дозатором, обеспечивающим одновременную работу шести пеногенераторов ГПС-600 или четырех ГПС-2000.

Для забора воды из открытых водоисточников на насосе ПНС имеется система всасывания. Газоструйный вакуумный аппарат смонтирован на выхлопной трубе двигателя шасси. Им управляют с помощью электропневмопривода. Станция имеет и другие органы управления: регулятор оборотов двигателя, рукоятку выключения сцепления двигателя привода насоса. Наличие системы вакууммирования, установленной на двигателе привода насоса, позволяет производить подачу воды без участия двигателя шасси. Кроме того, сокращается в два раза количество рычагов управления по сравнению с ранее выпускаемой машиной. На ранее выпускаемых машинах газоструйный вакуумный аппарат устанавливался на карбюраторном двигателе шасси.

Для обеспечения работы ПНС комплектуются небольшим количеством ПТВ (табл. 9.1).

Таблица 9.1

Наименование Количество, шт.

Рукав всасывающий диаметром 125 мм, длиной 4 мСетка всасывающая СВ-125

Ключ К 150

Ключ К 80

Четырехходовое разветвление 150х77х77х77х77

Огнетушитель ОУ-5

Лебедка ручная ЛР—0,15

Топор А-2

Лопатка ЛКО

Лом с шаровой головкой 4

2

2

2

2

1

1

1

1

1

Оборудование размещено в кузове с боковыми дверями шторного типа и задней дверью, открывающейся вверх. Это обеспечивает большой полезный объем по сравнению с ПНС более раннего выпуска, для размещения оборудования, проведения ремонтных работ и обслуживания двигателя и насоса.

Кузов оборудован плафонами освещения и выключателями контроля закрытия дверей.

Над задней дверью установлены проблесковый маячок синего цвета и фара-прожектор освещения рабочей зоны.

Для ПНС разработан новый центробежный насос, обеспечивающий подачу 100 л/с воды или раствора пенообразователя при напоре 100 м, потребляющая мощность которого 185 кВт – ПЦНН – 100/100. Принципиальная схема расположения рабочих колес на валах и привода к ним показана на рис. 9.3.

Из анализа этой схемы следует, что насос представляет собой агрегат, состоящий из двух двухступенчатых центробежных насосов, объединенных общим редуктором 6. Полумуфта 7 служит для соединения вала насоса 1 с автономным двигателем внутреннего сгорания. Каждый из них является насосом консольного типа с осевым подводом воды в первую ступень. После первой ступени вода по отводящим устройствам 4 поступает во вторую ступень, как показано стрелками. После второй ступени вода поступает в направляющий аппарат 5 с кольцевой камерой. Из этой камеры вода направляется в общий коллектор (на рисунке не показан), оборудованный двумя вентилями, заканчивающимися напорными патрубками с муфтовыми рукавными головками.

Уплотнения колес и межступенчатые уплотнения – щелевого типа. Концевые уплотнения валов – торцевого типа, выполненные из силицированного графита.

7

6

5

4

3

2

1

9

8



Рис. 9.3. Насос пожарный ПН-110:

1 – вал; 2 – вакуумный насос; 3 – рабочее колесо; 4 – отводящее устройство;5 – направляющий аппарат; 6 – редуктор; 7 – полумуфта; 8 – канал в коллектор;9 – дозатор

Насос имеет два всасывающих патрубка диаметром 125 мм и два напорных патрубка диаметром 100 мм. Он оборудован автоматической вакуумной системой водозаполнения. Система состоит из двух вакуумных шиберных насосов 2, которые работают от электродвигателей, получающих питание от аккумуляторных батарей базового шасси.

Вакуумные насосы обеспечивают разрежение в системе всасывания со всасывающими рукавами, достигающее 0,08 МПа. Заполнение всей всасывающей системы с высоты всасывания 7,5 м осуществляется за 60 с – не более. Вакуумная система имеет один вакуумный клапан, управляемый вакуумным реле одного из электродвигателей.

Электрический ток, потребляемый системой водозаполнения, не превышает 200 А.

На каждом корпусе центробежных насосов установлены измерительные патрубки. Они обеспечивают связь полостей насосов с напорным коллектором. Протекающая вода поворачивает установленные в них заслонки. Контроль изменения подачи воды обеспечивается резистором, установленным на оси заслонки. Сигналы от резистора поступают на электронный блок.

На насосном агрегате установлена автоматическая система дозирования, обеспечивающая подсос пенообразователя и дозированную его подачу во всасывающие полости обоих насосов. В зависимости от подачи насоса заданная концентрация пенообразователя поддерживается дозатором. На оси заслонки установлен резистор. При изменении подачи воды рассогласовываются показания резисторов дозатора и оси заслонки измерительного патрубка. С электронного блока подается команда на устранение рассогласования. При этом электродвигатель дозатора через редуктор автоматически обеспечит разворот его заслонки. Контроль уровня дозирования осуществляется по шкале дозатора. На насосе предусмотрено также дозирование пенообразователя в ручном режиме.

Блок автоматической системы дозирования (АСД) обеспечивает требуемый уровень концентрации пенообразователя в автоматическом режиме. Он имеет регулятор концентрации пенообразователя и индикатор нулевой подачи насоса «Нет подачи».

В кабине водителя установлен щит, с которого осуществляется контроль открытия дверей кузова, включение маяка, прожекторов и лампы подсветки места командира.

На крыше кабины находится светоакустическая балка и фара-прожектор. Управление ими осуществляется из кабины водителя.

9.2. Пожарные автомобили рукавные

Пожарные автомобили рукавные (АР) – специфические специальные автомобили. Они укомплектовываются большим количеством пожарных напорных рукавов диаметром 77, 110 или 150 мм. Общая длина рукавов достигает 2000 – 5000 м.

АР предназначены для обеспечения подачи большого количества воды на значительные расстояния, т.е. они используются только при тушении крупных пожаров. Они применяются только в комплексе с пожарными (или другими) насосными станциями или автоцистернами.

Специфика применения АР определяет ряд особых требований. Прежде всего, они должны сооружаться на полноприводных шасси, которые позволяют прокладывать рукавные линии при движении. АР оборудуются устройствами для скатки рукавов и их погрузки в кузов автомобиля. Скатанные рукава могут транспортироваться в кузове или на крыше АР. Для сохранности рукавов в кузове предусматривается специальная вентиляция под полом кузова. Возможно проветривание кузова через одно из его окон.

Общий вид АР-2(131) мод.133 представлен на рис. 9.4. На бампере автомобиля установлена лебедка, предназначенная для оказания помощи машинам, застрявшим в пути, и самовыталкивания. Лебедка потребляет мощность около 22 кВт. Ее привод осуществляется от коробки отбора мощности с помощью двух карданных валов и промежуточной опоры. От вала барабана лебедки осуществляется привод к специальному механизму для скатывания рукавов в скатки. Одновременно с помощью двух съемных приспособлений 8 (по обе стороны автомобиля) скатываются два рукава.

1

2

3

4

5

6

7

8



Рис. 9.4. Автомобиль пожарный рукавный АР-2(131) мод. 133:

1 – кабина; 2 – лафетный ствол; 3 – корзина; 4 – кузов; 5 – механизм погрузки скаток рукавов; 6 – отсеки с ПТВ; 7 – газовая сирена; 8 – механизм скатки рукавов

За трехместной кабиной 1 водителя установлен лафетный ствол 2. Подводящий трубопровод к нему выведен на правую сторону и закрыт заглушкой. Таким образом, после прокладки рукавной линии лафетным стволом можно тушить пожар. На некоторых АР лафетные стволы переносные.

На крыше кузова 4 откидные поручни образуют корзину 3, в которой после пожара может перевозиться часть пожарных рукавов.

Для хранения ПТВ в кузове предусмотрены ящики в отсеке 6. Два ящика находятся еще в задней части кузова. Сзади кузов закрыт двухстворчатыми дверями. Двери задних ящиков в открытом положении образуют площадку для укладки рукавов и подъема внутрь кузова.

Кузов оборудован быстросъемными стойками, которые образуют вертикальные симметричные секции для укладки рукавов.

Рукава соединяют и укладывают в секции змейкой. При движении АР и открытых дверях легко осуществляется прокладка рукавных линий.

Вентиляция уложенных в кузов рукавов осуществляется через четыре специальных отверстия в полу, закрываемых крышками, а также через дверной проем или люк крыши.

АР оборудован устройством 5 для загрузки скаток рукавов в кузов и газовой сиреной 7.

АР укомплектовывается различным оборудованием и инструментом. К ним относятся: зажимы рукавные, прожектор, катушки к нему и тренога, лампа паяльная и другое оборудование. Все оборудование и инструмент размещены в кабине водителя, в ящиках 6 кузова.

В настоящее время на вооружении ГПС могут быть использованы различные модели АР. Основные параметры показателей их характеристик представлены в табл. 9.2.

Таблица 9.2



п/п Показатели Размерность Модель АР

АР-2(131)133 АР-2(43105)215 АР-2(4310)*/

АР-2(43114)

1

2

3

4

5

6

7

8 Базовое шасси

Колесная формула

Мощность двигателя

Максимальная скорость

Численность боевого расчета

Длина напорных линий:

d = 150 мм

d = 110 ммd = 77 ммЛафетный ствол

ПЛС-60КС

переносной ПЛС-20

Масса АР -

-

кВт

км/ч

человек

м/шт.

шт.

шт.

кг ЗИЛ-131

6х6

110

80

3

1340/67

1760/88

2040/102

1

-

10425 КамАЗ-43105

6х6

155

85

3

1900/95+10

-

2800/140+10

-

2

14530 КамАЗ-4310

6х6

155

90/85

3/3

800/40

-

1200/60

1(40 л/с)

-

1200/15100

* Для модели АР-2(43114) указаны (в знаменателе) отличия от АР-2(4310).

На АР первой и второй модели осуществлена механизированная намотка рукавов в скатки и их погрузка в кузов. На третьей модели производится только механизированная намотка рукавов в скатки.

9

8

7

9

6

5

3

2

1

4

Рис. 9.5. Механизм скатки рукавов:

1 – коробка передач; 2 – коробка отбора мощности; 3 – лебедка; 4 – муфта; 5 и 7 – ведущая и ведомая звездочки; 6 – цепь; 8 – вал; 9 – вилки для намотки рукавов

Принципиальная схема механизма намотки рукавов в скатки на АР-2(131) представлена на рис. 9.5. Привод лебедки 3, имеющийся на АР, осуществляется от коробки отбора мощности 2, установленной на коробке передач 1. На валу с муфтой 4 закреплена ведущая звездочка 5 цепной передачи. С помощью цепи 6 приводится во вращение ведомая звездочка 7, закрепленная на валу 8. На концах вала 8 закреплены вилки 9 для намотки рукавов в скатки, их погрузка в кузов автомобиля производится спомощью специального механизма, устроенного в корме автомобиля. Он состоит из основания 4 и скалки 2 люльки (рис. 9.6), шарнирно соединен-ной со стрелой 3. Последняя совместно с сектором 6 поворачивается на осикронштейна 7. В положении, показан-ном на рисунке, скатка а легко сме-щается в кузов автомобиля. Специальным толкателем (на рисунке не показан) сектор 6 поворачивается на небольшой угол, а затем под тяжестью своей массы люлька перемещается в нижнее положение для погрузки на него скатки рукава. При включении пневмоцилиндра 1 сектор 6 будет поворачиваться тягой 8 с тросом и поднимать люльку в верхнее положение. На люльку могут укладываться две скатки диаметром 150 мм.

2

3

а

4

5

6

7

8

1

Рис. 9.6. Механизм погрузки скаток рукавов:

1 – пневмоцилиндр; 2 и 4 – скалки и основание люльки; 3 – стрела; 5 – упор основания люльки; 6 – сектор; 7 – кронштейн; 8 – тяга

Пневматический цилиндр 1 двустороннего действия установлен под полом кузова, воздух к нему подводится от воздушного ресивера тормозной системы автомобиля.

Пожарный автомобиль рукавный АР-2(4310) отличается от АР-2(131) параметрами технической характеристики и особенностями конструкции механизма намотки рукавов и трансмиссии к нему.

Общий вид автомобиля представлен на рис. 9.7. Внутреннее пространство кузова справа и слева оборудовано тремя продольными секциями. В них «гармошкой» уложены пожарные рукава. Они соединены между собой в одну линию в каждой секции. Часть рукавов уложены в скатки.

Боковые шторные двери закрывают отсеки с пожарно-техническим вооружением 2. На передней стенке кузова установлена откидная лестница для подъема боевого расчета к лафетному стволу 3.

Механизм намотки рукавов 4 подвешен на тележке с роликами. Он может перемещаться по направляющей, закрепленной к днищу кузова в переднем левом нижнем отсеке.

Трансмиссия на АР предназначена для привода аксиально-поршневого нерегулируемого гидронасоса, создающего рабочее давление (5±1) МПа в гидросистеме. Трансмиссия состоит из КОМ и карданного вала, который подводит мощность к гидронасосу.

5

4

3

2

1

82677016510

Рис. 9.7. Автомобиль пожарный рукавный АР-2(4310) ПМ-538:

1 – шасси; 2 – отсек ПТВ; 3 – лафетный ствол; 4 – механизм намотки рукавов; 5 – кузов

9

8

7

6

5

4

3

2

1

12

11

10



Рис. 9.8. Коробка отбора мощности:

1 – корпус; 2 – ось; 3 – шестерня; 4 – вал; 5 – блок шестерен; 6 – подвижнаяшестерня включения; 7 – вал; 8 – шпонка; 9 – валик; 10 – пружина; 11 – поршень;12 – муфта

Коробка отбора мощности устанавливается на правый люк коробки передач. Ее развернутая схема представлена на рис. 9.8. Шестерня 3 находится в постоянном зацеплении с блоком шестерен заднего хода коробки передач и через блок шестерен 5 передает движение на вал 4. Включается КОМ электропневматическим приводом из кабины водителя. При этом подвижная шестерня 6 с вилкой перемещается по валу 7 и входит в зацепление с блоком шестерен 5. Включение производится из кабины водителя. При выключении электропневматического привода пружиной 10 валик 9 с вилкой переместит шестерню 6 вправо. Шестерня 6 выйдет из зацепления с шестерней 5. Передаточное число КОМ равно 1,19.

Гидропривод состоит из нерегулируемого гидронасоса, гидрораспределителя, маслобака, гидромотора и трубопроводов. Гидронасос с помощью карданного вала крепится к фланцу 12 КОМ.

Механизм намотки состоит из трех частей: А – гидромотора; В – планетарного механизма и С – барабана намотки в сборе (рис. 9.9).

5

4

3

c

6

7

2

1

Н

В

b

d

а

А

Рис. 9.9. Механизм намотки:

А – гидромотор; В – планетарный механизм;а – солнечная шестерня; b – колесос внутренним зацеплением; с – барабаннамотки; d – сателлит; Н – водило;

1 – вал; 2, 6 – наружные и внутренниедиски; 3 – регулировочная гайка;4 – пружина; 5 – барабан;7 – диски трения

Гидромотор аксиально-поршневой. Так как гидронасос нерегулируемый, то гидромотор работает с постоянной скоростью.

Планетарный механизм – механизм с подвижными осями некоторых зубчатых колес. Передаточное отношение механизма, изображенного на рис. 9.9, в общем виде записывается так:

, (9.1)

где iabн – передаточное отношение от колеса а к колесу b при вращении водила Н; na и nb – частоты вращения колес а и b; nН – частота вращения водила; za и zb – числа зубьев колес а и b.

Так как колесо b заторможено, то nb = 0 и тогда

. (9.2)

После преобразования запишем

, (9.3)

где Db и da – диаметры начальных окружностей колес b и а.

Частота вращения водила Н, а следовательно, и барабана в сборе, об/мин, будет равна

. (9.4)

Для рассматриваемого случая iabН = 4.

Барабан намотки состоит из ряда деталей. Между дисками 2 и 6 размещены два диска трения 7. Степень сжатия дисков и, следовательно, момента трения регулируется пружинами 4. При увеличении момента сопротивления на барабане больше допустимого произойдет пробуксовка в рассмотренном фрикционе и перегрузка мотора А будет предотвращена.

На барабане установлен ложемент для укладки рукавной головки.

В комплекте механизма намотки имеется специальный диск, который для формирования скатки устанавливается на барабан и крепится тремя гайками-барашками.

Включение механизма намотки может производиться либо с блока управления в кабине водителя, либо с коробки управления, расположенной в левом переднем отсеке за второй дверью.

Механизм намотки размещается на специальной тележке с роликами. Он может перемещаться по направляющей, которая прикреплена к днищу кузова в переднем левом нижнем отсеке.

Прокладка рукавных линий производится в следующей последовательности:

устанавливают АР у пожарной насосной станции;

открывают задние двери кузова и присоединяют один или два рукава к напорным патрубкам ПНС;

начинают движение на первой передаче по намеченной трассе;

члены боевого расчета следят за выходом пожарных рукавов из секций кузова.

После прокладки рукавных линий АР может использоваться для тушения пожара, подавая воду лафетным стволом. По проложенным рукавным линиям вода может подаваться в очаги горения лафетными или ручными стволами автоцистерн.

Намотка рукавов в скатки осуществляется в следующей последовательности:

разъединяют соединительные головки рукавов;

располагают рукава так, чтобы при движении АР рукава находились слева от машины;

открывают дверку отсека механизма намотки, расположенную в передней части кузова, и шторную дверь отсека ПТВ;

выдвигают механизм на себя до упора и закрепляют его фиксатором;

на барабан намотки устанавливают диск для формирования скатки;

включают КОМ;

устанавливают рукавную головку рукава в ложемент механизма намотки;

придерживая рукавную головку, включают механизм намотки тумблером, размещенном на коробке управления в отсеке ПТВ, – начнется намотка рукава на барабан механизма.

После формирования скатки ее снимают с барабана и укладывают в кузов.

9.3. Аэродромные пожарные автомобили

К уровню противопожарной защиты аэродромов предъявляют ряд специфических требований. Они обусловлены, прежде всего, необходимостью спасания людей при авариях воздушных судов и тушению пожаров на них. На аэродромах возникает потребность тушения горящего разлитого топлива как под фюзеляжами самолетов, так и на взлетно-посадочной полосе (ВПП) и вне ее. Иногда появляется необходимость покрытия ВПП слоем воздушно-механической пены для облегчения посадки самолетов, терпящих бедствие.

Аэродромы гражданской авиации, в зависимости от габаритных размеров эксплуатируемых судов и интенсивности взлетов и посадок на них летательных аппаратов, разделяются на 9 категорий.

Для обеспечения пожарной безопасности на аэродромах должно быть по одному пожарному автомобилю с запасом огнетушащих веществ до 8 т (на аэродроме 9-й категории – 2 таких автомобиля). На аэродромах более 1-4 категории должно быть еще от 1 до 3 пожарных автомобилей с запасом огнетушащих веществ более 8 т.

В зависимости от категории аэродрома пожарные автомобили должны обеспечивать подачу огнетушащих веществ в количестве от 6 до 220 л/с.

Расположение аварийно-спасательных станций на аэродромах и требования к техническим характеристикам аэродромных пожарных автомобилей требуют боевого развертывания в течение не более трех минут. При этом следует исходить из того, что до 30 % всех аварий с летательными аппаратами происходит на ВПП; до 30 % – вне ее, а около 16 % – за пределами ВПП (рис. 9.10).

По требованию международной организации гражданской авиации (ИКАО) аэродромные ПА должны развивать скорость более 100 км/ч, а разгон до 80 км/ч должен осуществляться за время 40 – 45 с.

Тушение пожаров на аэродромах осуществляется только огнетушащими веществами, которые содержатся в цистернах пожарных автомобилей. Поэтому аэродромные пожарные автомобили создаются на шасси большой грузоподъемности.

Ось

Конец ВПП

Порог ВПП



Рис. 9.10. Распределение аварий с самолетами

Необходимость движения на взлетно-посадочной полосе и вне ее требует, чтобы использовались полноприводные шасси с колесной формулой 6х6 или 8х8.

Задачи по тушению пожаров характеризуются узким диапазоном работ, поэтому численность боевых расчетов на них невелика – 3 – 4 человека, включая водителя.

Для тушения пожаров или покрытия пеной ВПП требуется большой расход огнетушащих веществ, поэтому управляющая арматура водопенных коммуникаций оборудуется пневмо- или гидроэлектроприводом.

Стартовые пожарные автомобили находятся на дежурстве вблизи ВПП непрерывно. Они, как и дежурные пожарные автомобили, оборудованы подогревающими устройствами цистерны с водой, пенобака, насосного отсека. На них используются подогреватели типа ПДЖ-600 (теплопроизводительность до 25 МДж) или электроподогреватели. Общая мощность электроподогревателей достигает на некоторых машинах 12 кВт.

Пожарные аэродромные автомобили имеют дополнительные средства тушения. Такими средствами могут быть переносные установки СЖБ-50, порошковые огнетушители ОП-100, углекислотные установки с запасом углекислоты в количестве 50 – 100 кг.

Аэродромные пожарные автомобили укомплектованы пожарными напорными рукавами различных диаметров (по 4 – 6 штук), всасывающими и напорно-всасывающими рукавами.

Для вскрытия фюзеляжа на машинах могут быть одна-две дисковые пилы ПДС-400.

Пожарные насосы. На пожарных аэродромных автомобилях устанавливают насосы ПН-40УВ, ПН-60Б, на некоторых машинах применяют насосы фирмы Zigler с подачей 80 л/с и развиваемым напором (100±5) м.

Насос ПН-60Б при напоре 100 м и 3000 об/мин при высоте всасывания подает воды 60 л/с. Максимальная глубина всасывания равна 7,5 м. Эти насосы, как правило, имеют автономный двигатель привода.

Насос (рис. 9.11) центробежный одноступенчатый с направляющим аппаратом 12 и предвключенным колесом 17. Предвключенное колесо обеспечивает лучшую всасывающую способность насоса, а направляющий аппарат устраняет радиальные нагрузки на вал.

1

2

3

4

5

6

7

8

9

3

27

28

26

25

24

23

22

21

29

30

20

19

18

17

16

15

14

10

11

12

13



Рис. 9.11. Пожарный насос:

1 – муфта фланца; 2 – вал; 3 – червяк привода спидометра; 4 – кольцо; 5 - проставка корпуса; 6, 8 – подшипник; 7 – щуп; 9 – штуцер; 10 – шланг; 11 – рабочее колесо; 12 – направляющий аппарат; 13 – корпус; 14 – корпус крышки насоса; 15, 16, 20,23 – уплотнительное кольцо; 17 – предвключенное колесо; 18 – стопорная шайба; 19 – гайка; 21 – сливной краник; 22 – прокладка; 24 – манжета; 25 – уплотнительный стакан; 26 – кольцо стопорное; 27 – ведомая шестерня привода тахометра;28 – направляющая втулка; 29 – крышка; 30 – сальник

Направляющий аппарат имеет шесть отводных каналов, равномерно расположенных по окружности.

При работе насоса вода от рабочего колеса 11 по каналам аппарата поступает в кольцевую камеру корпуса 13, к напорному патрубку, на котором крепится напорный коллектор водопенных коммуникаций. К корпусу крышки насоса 14 подсоединяется тройник всасывающей линии.

Рабочее и предвключенное колеса закреплены на валу 2 шпонкой и стопорной шайбой 18 и гайкой 19.

Герметизация рабочего колеса внутри корпуса насоса осуществляется уплотнительными кольцами. От внешней среды внутренняя полость насоса защищается резиновыми манжетами, размещенными в стакане. Червячное колесо привода тахометра закреплено на валу насоса. В хвостовой его части на шлицах закреплена муфта привода от двигателя.

Система всасывания оборудована газоструйным вакуумным аппаратом. На насосе используется пеносмеситель ПС-5.

Источником энергии пожарного насоса может быть двигатель шасси или автономный двигатель. При последнем варианте насос и двигатель могут быть в одном агрегате или соединены трансмиссией с карданными валами.

Технические характеристики современных аэродромных автомобилей приводятся в табл. 9.3.

Таблица 9.3

Показатели Раз-мер-ность Модель автомобиля

АА-40(43105)-189 АА-5,3/40-50/3 АА-8/60-60/3 АА-7,2/55-(4320) АА-60(7310)-180 АА-15/80-100/3

Тип шасси - КамАЗ-43105 КамАЗ-433101 КамАЗ-43118 «Урал-4320» МАЗ-7310 МЗКТ

Колесная формула - 6х6 8х8

Боевой расчет (включая водителя) человек 4 3/5 3 3 4 3

Полная масса кг 15530 15600 19000 21000 42490 46600

Скорость км/ч 85 80 60 85

Тип насоса - ПН-40УВ ПН-60Б Циглер ГР-48/8-24

Подача насоса л/с 40 60 80

Число ГПС-600 для покрытия пеной ВПП шт. - 5 6 16 ГПС-200 - 8

Число подбамперных насадков ГПС-600 шт. 3 - - 3 - Дополнительные средства тушения ОП-100

-1 шт. СО2 –

50 кгСО2 –

50 кгСЖБ-50

2 шт.

ОП-100

-1 шт. СО2

– 100 кгПримечание: Расшифровка обозначения АА-5,3/40-50/3 – запас ОВ/мод. насоса – доп. ОВ/боевой расчет.

Рассмотрим конструктивные особенности ряда аэродромных автомобилей (АА).

Аэродромный автомобиль АА-60(7310)-160.01 сооружен на шасси грузового автомобиля высокой проходимости МАЗ-7310. Его колесная формула 8х8, мощность двигателя 386 кВт. Общее устройство АА показано на рис. 9.12. За кабиной водителя размещен двигатель базового шасси в отсеке 2. За ним установлена цистерна 6 и пенобак 7. Цистерна имеет теплоизоляцию и подогрев воды. Он осуществляется тремя трубчатыми электроподогревателями НВЖ 2/3 или выхлопными газами подогревателя ПЖД-600 (мощность 25 МДж). Пенобак обогревается одним электроподогревателем.

1

2

3

4

5

6

14

15

16

13

12

11

7

8

9

10



Рис. 9.12. Автомобиль аэродромный пожарный АА-60(7310) мод 160.01:

1 – лафетный ствол; 2 – отсек для двигателя шасси; 3 – ящик для ЗИП; 4 – подогреватель; 5 – ящик ЗИП; 6 – цистерна для воды; 7 – бак пенообразователя; 8 – ящик ЗИП шасси; 9, 10 – отсек моторно-насосного агрегата; 11 – радиатор обогреванасосного отсека; 12 – подножка откидная; 13 – система выпуска газов;14 – щит электрооборудования; 15 – отсек ПТВ; 16- шасси МАЗ-7310

Пожарный насос ПН-60Б имеет автономный привод от двигателя ЗИЛ-375 мощностью 132 кВт. Мотор – насосный агрегат 9 установлен в корме автомобиля. Отсек агрегата обогревается специальным радиатором от двигателя.

Пожарно-техническое вооружение и ЗИП автомобиля размещены, соответственно в отсеке 15, на крыше автомобиля и в ящиках 3 и 5.

В передней части автомобиля установлена опора для лафетного ствола 1. Лафетный ствол комбинированный и может подавать воду или воздушно-механическую пену.

Принципиальная схема водопенных коммуникаций представлена на рис. 9.13. В отличие от ранее рассматриваемых схем следует указать на ряд особенностей. Во-первых, клапаны 4, 6, 10, 11 и 13, кроме ручного включения, могут управляться дистанционно с помощью пневмосистемы.

Во-вторых, задвижка 13 коллектора открывается только при заправке цистерны водой насосом или перед использованием лафетного ствола 9.В-третьих, в системе имеет-ся дополнительная линияподачи пенообразователя из пенобака 5, через клапан 4,минуя пеносмеситель 2.Этот путь используется при работе лафетным стволом 9.

3

4

5

9

8

7

3

10

11

12

13

14

1

2

6

Рис. 9.13. Водопенные коммуникации:

1 – насос ПН-40Б; 2 – пеносмеситель; 3 – штуцер;4 – клапан Ду-125-; 5 – пенобак; 6 – клапан Ду-32;7 – напорные задвижки; 8 – вакуумный кран; 9 – лафетный ствол; 10 – клапан Ду-125; 11 – клапан Ду-90; 12 – цистерна; 13 – клапан коллектора;14 – клапан Ду-150

Включение клапана 13 может осуществляться как от пневмосети автомобиля, так и от компрессора автономного двигателя ЗИЛ-375.

Управление элементами водопенных коммуникаций может осуществляться вручную или дистанционно системой пневмоуправления (рис. 9.14). Питание системы дублировано и осуществляется от пневмосети автомобиля (воздушный баллон 11) или от компрессора 12 двигателя ЗИЛ-375. На приводимой схеме с помощью распределителей с электроуправлением 16 и 17 осуществляется управление пневмоцилиндрами двойного действия 1 и 2, переключающими подачу к лафетному стволу воду или раствор пенообразователя. Пневмоцилиндр 3 двойного действия, включаемый распределителем 9 с электроуправлением, предназначен для включения и выключения сцепления моторно-насосного агрегата. Отдельные электропневматические клапаны обеспечивают управление клапанами Ду-32, Ду-90, Ду-125, Ду-150 и Ду-50.

Для дистанционного управления положением лафетного ствола предусмотрен гидропривод (рис. 9.15). Он состоит из маслобака 1, установленного на крыше насосного агрегата, масляного насоса 3, золотника 5 (1) управления гидроцилиндром 7 перемещения лафетного ствола в вертикальной плоскости, золотника 5 (2) управления гидроцилиндром 6 поворота лафетного ствола, трубопроводов, шлангов высокого давления, предохранительного клапана 4 и фильтра 11. Для заполнения системы гидропривода используется ручной насос 8, который входит в комплект автомобиля.

В этом гидроприводе используется масляный насос гидроусилителя руля автомобиля ЗИЛ-375, вал которого находится в постоянном зацеплении с валом двигателя.

1

2

3

4

5

6

7

8

9

19

17

18

16

13

12

11

10

15

14



Рис. 9.14. Система пневмопривода:

1, 2 – цилиндр управления лафетным стволом; 3 – цилиндр управления сцеплением; 4 – клапан Ду-32; 5 – клапан Ду-90; 6 – клапан Ду-125; 7 – клапан Ду-150; 8 – клапан Ду-50; 9 – распределитель с электроуправлением; 10 – клапан ограничитель;11 – воздушный баллон; 12 – компрессор; 13 – фильтр; 14 – регулятор давления;15 – манометр; 16, 17 – пневмораспределители с электроуправлением;18 – дроссель с обратным клапаном; 19 – пневмоглушитель

Щитки управления лафетным стволом, запорной арматурой водопенных коммуникаций, запуском двигателя насосного агрегата, включения сцепления и контроля за работой агрегатов находятся в правой и левой кабине автомобиля, в насосном отсеке и у лафетного ствола.

В комплект пожарного оборудования основного аэродромного автомобиля входят две установки СЖБ-60 и порошковый огнетушитель ОП-100. Для вскрытия конструкций самолетов на автомобилей вывозятся две дисковые пилы ПДС-400 с бензомоторными двигателями. Все пожарное оборудование размещается в отсеках кузова, насосном отсеке, на крыше автомобиля и надежно закрепляется специальными зажимами.

Аэродромный автомобиль АА-7,2/55-(4310). Автомобиль сооружен на шасси Урал-4310. Основные элементы компоновки его представлены на рис. 9.16. За кабиной шасси находится площадка для ПТВ. На ней размещены колонка, напорно-всасывающие рукава, огнетушитель ОПУ-2-03 9, огнетушитель ОУ-80 и другое оборудование. В переднем отсеке 3 установлен автономный двигатель ЯМЗ-236 для привода насоса, размещенного в заднем отсеке 7. Трансмиссия насоса включает редуктор, повышающий обороты, и два карданных вала, соединенных промежуточным валом.

6

7

9

5 (1)

5 (2)

8

10

11

3

2

1

4

Рис. 9.15. Принципиальная схемагидропровода лафетного ствола:

1 – бак для масла; 2 – кран разобщительный; 3 – насос; 4 – предохранительный клапан; 5 – золотники; 6 – цилиндрповорота ствола; 7 – цилиндр подъема ствола; 8 – ручной насос; 9 – трубопровод дренажный; 10 – трубопровод сливной;11 – фильтр

На кузове автомобиля установлен лафетный ствол 4 СПЛК-60 с ручным управлением с помощью оператора. Цистерна 5 размещена между автономным двигателем и пожарным насосом. На крыше кузова закреплено ПТВ 6. Оно включает лестницу, пять пеногенераторов ГПС-600, два всасывающих рукава и трубы для заливки полосы пеной.

В переднем отсеке (за двигателем) размещаются соединительные головки, стволы СРК, гидроэлеватор, сетка СВ-125, водосборник и другое оборудование.

В заднем отсеке установлен насос ПН-60, бак с пенообразователем и размещается ПТВ. Оно включает 16 пеногенераторов ГПС-200; шесть ПНР диаметром 77 мм; четыре ПНР диаметром 51 мм, аптечку.

1

2

3

4

5

6

7

9

8

10



Рис. 9.16. Общий вид АА-7,2/55(4310):

1 – шасси; 2 – площадка ПТВ; 3 – передний отсек, двигатель ЯМЗ-238; 4 – лафетный ствол; 5 – цистерна; 6 – ПТВ; 7 – задний отсек, центробежный насос ПН-60 и ПТВ; 8 – установ